Suppr超能文献

用于骨科手术规划与模拟的脊柱可变形多表面分割

Deformable multisurface segmentation of the spine for orthopedic surgery planning and simulation.

作者信息

Haq Rabia, Schmid Jérôme, Borgie Roderick, Cates Joshua, Audette Michel A

机构信息

Memorial Sloan-Kettering Cancer Center, Sloan Kettering Institute, Department of Medical Physics, New York, United States.

Haute École Spécialisée de la Suisse Occidentale, Geneva School of Health Sciences, Geneva, Switzerland.

出版信息

J Med Imaging (Bellingham). 2020 Jan;7(1):015002. doi: 10.1117/1.JMI.7.1.015002. Epub 2020 Feb 22.

Abstract

We describe a shape-aware multisurface simplex deformable model for the segmentation of healthy as well as pathological lumbar spine in medical image data. This model provides an accurate and robust segmentation scheme for the identification of intervertebral disc pathologies to enable the minimally supervised planning and patient-specific simulation of spine surgery, in a manner that combines multisurface and shape statistics-based variants of the deformable simplex model. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user assistance is allowed to disable the prior shape influence during deformation. Results demonstrate validation against user-assisted expert segmentation, showing excellent boundary agreement and prevention of spatial overlap between neighboring surfaces. This section also plots the characteristics of the statistical shape model, such as compactness, generalizability and specificity, as a function of the number of modes used to represent the family of shapes. Final results demonstrate a proof-of-concept deformation application based on the open-source surgery simulation Simulation Open Framework Architecture toolkit. To summarize, we present a deformable multisurface model that embeds a shape statistics force, with applications to surgery planning and simulation.

摘要

我们描述了一种形状感知多表面单纯形可变形模型,用于医学图像数据中健康及病理性腰椎的分割。该模型提供了一种准确且稳健的分割方案,用于识别椎间盘病变,以便以结合可变形单纯形模型的多表面和基于形状统计的变体的方式,实现脊柱手术的最少监督规划和针对患者的模拟。通过应用主成分分析捕获数据集中的统计形状变化,并在分割过程中纳入以优化结果。在形状统计阻碍病理区域检测的情况下,允许用户协助在变形过程中禁用先前形状的影响。结果表明该模型相对于用户辅助的专家分割得到了验证,显示出出色的边界一致性以及相邻表面之间空间重叠的预防效果。本节还绘制了统计形状模型的特征,如紧致性、通用性和特异性,作为用于表示形状族的模式数量的函数。最终结果展示了基于开源手术模拟框架(Simulation Open Framework Architecture)工具包的概念验证变形应用。总之,我们提出了一种嵌入形状统计力的可变形多表面模型,并将其应用于手术规划和模拟。

相似文献

9
Deformable part models for object detection in medical images.用于医学图像中目标检测的可变形部件模型
Biomed Eng Online. 2014;13 Suppl 1(Suppl 1):S1. doi: 10.1186/1475-925X-13-S1-S1. Epub 2014 Feb 28.

本文引用的文献

7
Statistical shape modeling of cam femoroacetabular impingement.凸轮型股骨髋臼撞击症的统计形状建模。
J Orthop Res. 2013 Oct;31(10):1620-6. doi: 10.1002/jor.22389. Epub 2013 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验