Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada; Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
Spat Spatiotemporal Epidemiol. 2024 Aug;50:100664. doi: 10.1016/j.sste.2024.100664. Epub 2024 Jun 13.
Modelling epidemics is crucial for understanding the emergence, transmission, impact and control of diseases. Spatial individual-level models (ILMs) that account for population heterogeneity are a useful tool, accounting for factors such as location, vaccination status and genetic information. Parametric forms for spatial risk functions, or kernels, are often used, but rely on strong assumptions about underlying transmission mechanisms. Here, we propose a class of non-parametric spatial disease transmission model, fitted within a Bayesian Markov chain Monte Carlo (MCMC) framework, allowing for more flexible assumptions when estimating the effect on spatial distance and infection risk. We focus upon two specific forms of non-parametric spatial infection kernel: piecewise constant and piecewise linear. Although these are relatively simple forms, we find them to produce results in line with, or superior to, parametric spatial ILMs. The performance of these models is examined using simulated data, including under circumstances of model misspecification, and then applied to data from the UK 2001 foot-and-mouth disease.
建模对于理解疾病的出现、传播、影响和控制至关重要。考虑到人口异质性的空间个体水平模型 (ILMs) 是一种有用的工具,可以考虑位置、疫苗接种状态和遗传信息等因素。通常使用空间风险函数(或核)的参数形式,但这依赖于对潜在传播机制的严格假设。在这里,我们提出了一类非参数空间疾病传播模型,在贝叶斯马尔可夫链蒙特卡罗 (MCMC) 框架内进行拟合,允许在估计空间距离和感染风险的影响时做出更灵活的假设。我们专注于两种特定形式的非参数空间感染核:分段常数和分段线性。尽管这些形式相对简单,但我们发现它们产生的结果与参数空间 ILMs 一致,甚至优于后者。我们使用模拟数据来检查这些模型的性能,包括在模型误设的情况下,然后将其应用于英国 2001 年口蹄疫的数据。