Suppr超能文献

基于随机隔间建模和空间风险评估的情境接触者追踪。

Contextual contact tracing based on stochastic compartment modeling and spatial risk assessment.

作者信息

Mahmood Mateen, Mateu Jorge, Hernández-Orallo Enrique

机构信息

Universitat Jaume I, Castellón, Spain.

Universitat Politécnica de Valencia, Valencia, Spain.

出版信息

Stoch Environ Res Risk Assess. 2022;36(3):893-917. doi: 10.1007/s00477-021-02065-2. Epub 2021 Oct 26.

Abstract

The current situation of COVID-19 highlights the paramount importance of infectious disease surveillance, which necessitates early monitoring for effective response. Policymakers are interested in data insights identifying high-risk areas as well as individuals to be quarantined, especially as the public gets back to their normal routine. We investigate both requirements by the implementation of disease outbreak modeling and exploring its induced dynamic spatial risk in form of risk assessment, along with its real-time integration back into the disease model. This paper implements a contact tracing-based stochastic compartment model as a baseline, to further modify the existing setup to include the spatial risk. This modification of each individual-level contact's intensity to be dependent on its spatial location has been termed as . The results highlight that the inclusion of spatial context tends to send more individuals into quarantine which reduces the overall spread of infection. With a simulated example of an induced spatial high-risk, it is highlighted that the new spatio-SIR model can act as a tool to empower the analyst with a capability to explore disease dynamics from a spatial perspective. We conclude that the proposed spatio-SIR tool can be of great help for policymakers to know the consequences of their decision prior to their implementation.

摘要

新冠疫情的现状凸显了传染病监测的至关重要性,这需要进行早期监测以便做出有效应对。政策制定者对能够识别高风险地区以及需要隔离人员的数据洞察很感兴趣,尤其是在公众恢复正常生活之际。我们通过实施疾病爆发建模并以风险评估的形式探索其引发的动态空间风险,以及将其实时整合回疾病模型中来研究这两方面的需求。本文实施了一个基于接触者追踪的随机 compartment 模型作为基线,进一步修改现有设置以纳入空间风险。将每个个体层面接触强度修改为依赖于其空间位置的这种做法被称为 。结果表明,纳入空间背景往往会使更多人进入隔离状态,从而减少感染的总体传播。通过一个诱导空间高风险的模拟示例,突出表明新的时空易感 - 感染 - 康复(SIR)模型可作为一种工具,使分析人员能够从空间角度探索疾病动态。我们得出结论,所提出的时空 SIR 工具对于政策制定者在实施决策之前了解其决策后果会有很大帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d31/8547309/33a2c57adbc9/477_2021_2065_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验