Suppr超能文献

水果的抗氧化及α-淀粉酶抑制活性与植物化合物

Antioxidant and a-amylase Inhibitory Activities and Phytocompounds of Fruits.

作者信息

Hoang Anh La, Xuan Tran Dang, Dieu Thuy Nguyen Thi, Quan Nguyen Van, Trang Le Thu

机构信息

Department of Development Technology, Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan.

出版信息

Medicines (Basel). 2020 Feb 28;7(3):10. doi: 10.3390/medicines7030010.

Abstract

fruit is commonly used for food ingredients and traditional medicines in tropical countries, however, information about its biological activities and chemical profiles has been inadequately reported. In this study, a bio-guided fractionation of antioxidants and α-amylase inhibitors from hexane (MH) and ethyl acetate (ME) extracts of fruit (pericarp and seed) was carried out. Eleven fractions from MH (D1-D11) and 17 fractions from ME (T1-T17) were obtained from column chromatography over silica gel, which were then examined for anti-radical capacity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, and pancreatic α-amylase inhibition, a key enzyme linked to type 2 diabetes. Of isolated fractions, the fraction T4 revealed the most potent anti-DPPH activity (IC = 0.13 mg/mL), whereas T2 exhibits the strongest ABTS cation scavenging ability (IC = 0.31 mg/mL). In the enzymatic assay, the fractions D3 and T4 significantly inhibit the α-amylase reaction with IC values of 0.34 and 0.86 mg/mL, respectively. Remarkably, α-amylase suppression of T4 is close to acarbose and over four times stronger than palmitic acid, which are the well-known α-amylase inhibitors (IC = 0.07 and 1.52 mg/mL, respectively). The active constituents from fractions were identified by gas chromatography-mass spectrometry (GC-MS). The results show that the fraction D3 contains five major compounds, which are grouped in five classes consisting of fatty acids, phenols, benzodioxoles, alcohols, and sesquiterpenes. Among them, palmitic acid is the most dominant compound (32.64%), followed by 2R-acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol (16.69%). Whilst, six major compounds belonging to fatty acid and coumarin classes are identified in the fraction T4. The most abundant compound in T4 is dentatin (47.32%), followed by palmitic acid (15.11%). This is the first finding that fruit can be a promising source for the development of natural antioxidant and antidiabetic agents. Additionally, the outcome reveals that dentatin, a known natural antineoplastic agent, can be feasibly exploited from fruit.

摘要

在热带国家,水果通常被用作食品原料和传统药物,然而,关于其生物活性和化学特征的信息报道不足。在本研究中,对水果(果皮和种子)的己烷提取物(MH)和乙酸乙酯提取物(ME)进行了生物活性导向的抗氧化剂和α-淀粉酶抑制剂分级分离。通过硅胶柱色谱从MH中获得了11个馏分(D1-D11),从ME中获得了17个馏分(T1-T17),然后通过2,2-二苯基-1-苦基肼(DPPH)和2,2'-偶氮二(3-乙基苯并噻唑啉-6-磺酸)(ABTS)测定法以及胰腺α-淀粉酶抑制作用(一种与2型糖尿病相关的关键酶)来检测其抗自由基能力。在分离出的馏分中,馏分T4显示出最强的抗DPPH活性(IC = 0.13 mg/mL),而T2表现出最强的ABTS阳离子清除能力(IC = 0.31 mg/mL)。在酶促试验中,馏分D3和T4分别以0.34和0.86 mg/mL的IC值显著抑制α-淀粉酶反应。值得注意的是,T4对α-淀粉酶的抑制作用接近阿卡波糖,比著名的α-淀粉酶抑制剂棕榈酸强四倍多(其IC值分别为0.07和1.52 mg/mL)。通过气相色谱-质谱联用(GC-MS)鉴定了馏分中的活性成分。结果表明,馏分D3含有五种主要化合物,它们分为五类,包括脂肪酸、酚类、苯并二恶唑类、醇类和倍半萜类。其中,棕榈酸是最主要的化合物(32.64%),其次是2R-乙酰氧基甲基-1,3,3-三甲基-4t-(3-甲基-2-丁烯-1-基)-1t-环己醇(16.69%)。同时,在馏分T4中鉴定出了六种属于脂肪酸和香豆素类的主要化合物。T4中含量最丰富的化合物是齿孔酸(47.32%),其次是棕榈酸(15.11%)。这是首次发现该水果可能是开发天然抗氧化剂和抗糖尿病药物的有前途的来源。此外,结果表明,齿孔酸这种已知的天然抗肿瘤药物可以从该水果中可行地开发出来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39fb/7151626/82ece4bd2ccc/medicines-07-00010-g001.jpg

相似文献

1
Antioxidant and a-amylase Inhibitory Activities and Phytocompounds of Fruits.
Medicines (Basel). 2020 Feb 28;7(3):10. doi: 10.3390/medicines7030010.
2
Bio-Guided Isolation of Prospective Bioactive Constituents from Roots of (Dalzell) Oliv.
Molecules. 2019 Dec 4;24(24):4442. doi: 10.3390/molecules24244442.
4
Phytochemical Compositions and Assessments of Antioxidant and Antidiabetic Potentials of Fractions from Thonn.
Pharmacogn Mag. 2017 Oct;13(Suppl 3):S470-S480. doi: 10.4103/pm.pm_118_17. Epub 2017 Oct 11.
7
Antioxidant, Anti-tyrosinase, Anti-α-amylase, and Cytotoxic Potentials of the Invasive Weed .
Plants (Basel). 2020 Dec 31;10(1):69. doi: 10.3390/plants10010069.

引用本文的文献

1
Naphthoquinone fused diazepines targeting hyperamylasemia: potential therapeutic agents for diabetes and cancer.
Future Med Chem. 2024;16(21):2231-2245. doi: 10.1080/17568919.2024.2400968. Epub 2024 Sep 20.
4
Hemin with Peroxidase Activity Can Inhibit the Oxidative Damage Induced by Ultraviolet A.
Curr Issues Mol Biol. 2022 Jun 10;44(6):2683-2694. doi: 10.3390/cimb44060183.
5
Cytotoxicity of Fractions against Myeloma and Lymphoma Cell Lines.
Molecules. 2022 Apr 3;27(7):2322. doi: 10.3390/molecules27072322.
7
Nutritive Importance and Therapeutics Uses of Three Different Varieties (, , and ) of Curry Leaves: An Updated Review.
Evid Based Complement Alternat Med. 2021 Oct 31;2021:5523252. doi: 10.1155/2021/5523252. eCollection 2021.
9
Antioxidant, Anti-tyrosinase, Anti-α-amylase, and Cytotoxic Potentials of the Invasive Weed .
Plants (Basel). 2020 Dec 31;10(1):69. doi: 10.3390/plants10010069.

本文引用的文献

1
Bio-Guided Isolation of Prospective Bioactive Constituents from Roots of (Dalzell) Oliv.
Molecules. 2019 Dec 4;24(24):4442. doi: 10.3390/molecules24244442.
3
Anticancer carbazole alkaloids and coumarins from Clausena plants: A review.
Chin J Nat Med. 2017 Dec;15(12):881-888. doi: 10.1016/S1875-5364(18)30003-7.
8
Evaluation of Antioxidant Activity and Acute Toxicity of Clausena excavata Leaves Extract.
Evid Based Complement Alternat Med. 2014;2014:975450. doi: 10.1155/2014/975450. Epub 2014 Dec 24.
9
Safety and efficacy of acarbose in the treatment of diabetes in Chinese patients.
Ther Clin Risk Manag. 2014 Jun 30;10:505-11. doi: 10.2147/TCRM.S50362. eCollection 2014.
10
Inhibitory effects of medicinal mushrooms on α-amylase and α-glucosidase - enzymes related to hyperglycemia.
Food Funct. 2013 Apr 25;4(4):644-9. doi: 10.1039/c3fo30376d. Epub 2013 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验