Suppr超能文献

ARNS:车联网中消息广播的自适应中继节点选择方法。

ARNS: Adaptive Relay-Node Selection Method for Message Broadcasting in the Internet of Vehicles.

机构信息

School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China.

College of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China.

出版信息

Sensors (Basel). 2020 Feb 29;20(5):1338. doi: 10.3390/s20051338.

Abstract

The proper utilization of road information can improve the performance of relay-node selection methods. However, the existing schemes are only applicable to a specific road structure, and this limits their application in real-world scenarios where mostly more than one road structure exists in the Region of Interest (RoI), even in the communication range of a sender. In this paper, we propose an adaptive relay-node selection (ARNS) method based on the exponential partition to implement message broadcasting in complex scenarios. First, we improved a relay-node selection method in the curved road scenarios through the re-definition of the optimal position considering the distribution of the obstacles. Then, we proposed a criterion of classifying road structures based on their broadcast characteristics. Finally, ARNS is designed to adaptively apply the appropriate relay-node selection method based on the exponential partition in realistic scenarios. Simulation results on a real-world map show that the end-to-end broadcast delay of ARNS is reduced by at least 13.8% compared to the beacon-based relay-node selection method, and at least 14.0% compared to the trinary partitioned black-burst-based broadcast protocol (3P3B)-based relay-node selection method. The broadcast coverage is increased by 3.6-7% in curved road scenarios, with obstacles benefitting from the consideration of the distribution of obstacles. Moreover, ARNS achieves a higher and more stable packet delivery ratio (PDR) than existing methods profiting from the adaptive selection mechanism.

摘要

道路信息的合理利用可以提高中继节点选择方法的性能。然而,现有的方案仅适用于特定的道路结构,这限制了它们在现实场景中的应用,在这些场景中,目标区域(ROI)中存在多种道路结构,甚至在发送方的通信范围内也是如此。在本文中,我们提出了一种基于指数分区的自适应中继节点选择(ARNS)方法,以实现复杂场景中的消息广播。首先,我们通过重新定义考虑障碍物分布的最优位置,改进了曲线路径场景中的中继节点选择方法。然后,我们提出了一种基于广播特性对道路结构进行分类的标准。最后,ARNS 被设计为根据实际情况自适应地应用基于指数分区的适当中继节点选择方法。在真实地图上的仿真结果表明,与基于信标(beacon)的中继节点选择方法相比,ARNS 的端到端广播延迟至少减少了 13.8%,与基于三分段黑爆发(3P3B)的广播协议的中继节点选择方法相比,至少减少了 14.0%。在有障碍物的曲线路径场景中,广播覆盖率增加了 3.6-7%,这得益于障碍物分布的考虑。此外,ARNS 实现了比现有方法更高和更稳定的分组投递率(PDR),这得益于自适应选择机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4df/7085589/0ee152d4682c/sensors-20-01338-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验