Suppr超能文献

基于 GMM 和类别质量焦点损失的交通标志优化的多尺度识别方法

A Multiscale Recognition Method for the Optimization of Traffic Signs Using GMM and Category Quality Focal Loss.

机构信息

School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China.

Zhejiang Provincial Key Lab of Equipment Electronics, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2020 Aug 27;20(17):4850. doi: 10.3390/s20174850.

Abstract

Effective traffic sign recognition algorithms can assist drivers or automatic driving systems in detecting and recognizing traffic signs in real-time. This paper proposes a multiscale recognition method for traffic signs based on the Gaussian Mixture Model (GMM) and Category Quality Focal Loss (CQFL) to enhance recognition speed and recognition accuracy. Specifically, GMM is utilized to cluster the prior anchors, which are in favor of reducing the clustering error. Meanwhile, considering the most common issue in supervised learning (i.e., the imbalance of data set categories), the category proportion factor is introduced into Quality Focal Loss, which is referred to as CQFL. Furthermore, a five-scale recognition network with a prior anchor allocation strategy is designed for small target objects i.e., traffic sign recognition. Combining five existing tricks, the best speed and accuracy tradeoff on our data set (40.1% mAP and 15 FPS on a single 1080Ti GPU), can be achieved. The experimental results demonstrate that the proposed method is superior to the existing mainstream algorithms, in terms of recognition accuracy and recognition speed.

摘要

有效的交通标志识别算法可以帮助驾驶员或自动驾驶系统实时检测和识别交通标志。本文提出了一种基于高斯混合模型(GMM)和类别质量焦点损失(CQFL)的多尺度交通标志识别方法,以提高识别速度和识别精度。具体来说,利用 GMM 对先验锚点进行聚类,有利于减少聚类误差。同时,考虑到监督学习中最常见的问题(即数据集类别不平衡),将类别比例因子引入到质量焦点损失中,称为 CQFL。此外,针对小目标对象(即交通标志识别),设计了一个具有先验锚分配策略的五尺度识别网络。结合五种现有技巧,在我们的数据集上实现了最佳的速度和精度权衡(在单个 1080Ti GPU 上的 mAP 为 40.1%,帧率为 15 FPS)。实验结果表明,该方法在识别精度和识别速度方面均优于现有的主流算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6b6/7506910/80745141ae54/sensors-20-04850-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验