Suppr超能文献

具有神经形态多层电子真皮的义肢能够感知触觉和疼痛。

Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain.

机构信息

Department of Biomedical Engineering, Johns Hopkins School of Medicine, 720 Rutland Ave, Baltimore, MD 21205.

Singapore Institute for Neurotechnology, National University of Singapore, 28 Medical Dr. #05-COR, Singapore 117456.

出版信息

Sci Robot. 2018 Jun 27;3(19). doi: 10.1126/scirobotics.aat3818. Epub 2018 Jun 20.

Abstract

The human body is a template for many state-of-the-art prosthetic devices and sensors. Perceptions of touch and pain are fundamental components of our daily lives that convey valuable information about our environment while also providing an element of protection from damage to our bodies. Advances in prosthesis designs and control mechanisms can aid an amputee's ability to regain lost function but often lack meaningful tactile feedback or perception. Through transcutaneous electrical nerve stimulation (TENS) with an amputee, we discovered and quantified stimulation parameters to elicit innocuous (non-painful) and noxious (painful) tactile perceptions in the phantom hand. Electroencephalography (EEG) activity in somatosensory regions confirms phantom hand activation during stimulation. We invented a multilayered electronic dermis (e-dermis) with properties based on the behavior of mechanoreceptors and nociceptors to provide neuromorphic tactile information to an amputee. Our biologically inspired e-dermis enables a prosthesis and its user to perceive a continuous spectrum from innocuous to noxious touch through a neuromorphic interface that produces receptor-like spiking neural activity. In a Pain Detection Task (PDT), we show the ability of the prosthesis and amputee to differentiate non-painful or painful tactile stimuli using sensory feedback and a pain reflex feedback control system. In this work, an amputee can use perceptions of touch and pain to discriminate object curvature, including sharpness. This work demonstrates possibilities for creating a more natural sensation spanning a range of tactile stimuli for prosthetic hands.

摘要

人体是许多最先进的假肢设备和传感器的模板。触觉和疼痛感知是我们日常生活的基本组成部分,它们传达了有关我们环境的有价值的信息,同时还为我们的身体免受伤害提供了保护。假肢设计和控制机制的进步可以帮助截肢者恢复失去的功能,但往往缺乏有意义的触觉反馈或感知。通过对截肢者进行经皮电神经刺激 (TENS),我们发现并量化了刺激参数,以在幻影手上引起无害(无痛)和有害(疼痛)的触觉感知。体感区域的脑电图 (EEG) 活动证实了刺激期间幻影手的激活。我们发明了一种具有基于机械感受器和伤害感受器行为特性的多层电子真皮 (e-dermis),为截肢者提供神经形态触觉信息。我们受生物启发的 e-dermis 使假肢及其使用者能够通过产生类似于受体的尖峰神经活动的神经形态接口感知从无害到有害的连续触觉。在疼痛检测任务 (PDT) 中,我们展示了假肢和截肢者使用感觉反馈和疼痛反射反馈控制系统区分无痛或疼痛触觉刺激的能力。在这项工作中,截肢者可以使用触摸和疼痛感知来区分物体的曲率,包括锐度。这项工作展示了为假肢手创造更自然的感觉范围的可能性,包括一系列触觉刺激。

相似文献

5
Targeted Transcutaneous Electrical Nerve Stimulation for Phantom Limb Sensory Feedback.用于幻肢感觉反馈的靶向经皮电神经刺激
IEEE Biomed Circuits Syst Conf. 2017 Oct;2017. doi: 10.1109/biocas.2017.8325200. Epub 2018 Mar 29.
6
Neuromorphic vision and tactile fusion for upper limb prosthesis control.用于上肢假肢控制的神经形态视觉与触觉融合
Int IEEE EMBS Conf Neural Eng. 2019 Mar;2019:981-984. doi: 10.1109/ner.2019.8716890. Epub 2019 May 20.

引用本文的文献

1
Optimization frameworks for bespoke sensory encoding in neuroprosthetics.神经假体定制感觉编码的优化框架。
APL Bioeng. 2025 May 20;9(2):020901. doi: 10.1063/5.0249434. eCollection 2025 Jun.

本文引用的文献

1
Tactile Feedback in Upper Limb Prosthetic Devices Using Flexible Textile Force Sensors.使用柔性纺织力传感器的上肢假肢装置中的触觉反馈
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2014 Aug;2014:114-119. doi: 10.1109/biorob.2014.6913762. Epub 2014 Oct 2.
2
Targeted Transcutaneous Electrical Nerve Stimulation for Phantom Limb Sensory Feedback.用于幻肢感觉反馈的靶向经皮电神经刺激
IEEE Biomed Circuits Syst Conf. 2017 Oct;2017. doi: 10.1109/biocas.2017.8325200. Epub 2018 Mar 29.
4
Self-healing soft pneumatic robots.自修复软质气动机器人
Sci Robot. 2017 Aug 16;2(9). doi: 10.1126/scirobotics.aan4268.
8
Simulating tactile signals from the whole hand with millisecond precision.以毫秒精度模拟整个手部的触觉信号。
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5693-E5702. doi: 10.1073/pnas.1704856114. Epub 2017 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验