Tian Yucheng, Valle Giacomo, Cederna Paul S, Kemp Stephen W P
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Department of Electrical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
Biomimetics (Basel). 2025 Feb 21;10(3):130. doi: 10.3390/biomimetics10030130.
The development of neuroprosthetic limbs-robotic devices designed to restore lost limb functions for individuals with limb loss or impairment-has made significant strides over the past decade, reaching the stage of successful human clinical trials. A current research focus involves providing somatosensory feedback to these devices, which was shown to improve device control performance and embodiment. However, widespread commercialization and clinical adoption of somatosensory neuroprosthetic limbs remain limited. Biomimetic neuroprosthetics, which seeks to resemble the natural sensory processing of tactile information and to deliver biologically relevant inputs to the nervous system, offer a promising path forward. This method could bridge the gap between existing neurotechnology and the future realization of bionic limbs that more closely mimic biological limbs. In this review, we examine the recent key clinical trials that incorporated somatosensory feedback on neuroprosthetic limbs through biomimetic neurostimulation for individuals with missing or paralyzed limbs. Furthermore, we highlight the potential impact of cutting-edge advances in tactile sensing, encoding strategies, neuroelectronic interfaces, and innovative surgical techniques to create a clinically viable human-machine interface that facilitates natural tactile perception and advanced, closed-loop neuroprosthetic control to improve the quality of life of people with sensorimotor impairments.
神经假肢肢体(为肢体缺失或受损个体设计的旨在恢复其失去的肢体功能的机器人设备)在过去十年中取得了重大进展,已进入成功的人体临床试验阶段。当前的一个研究重点是为这些设备提供体感反馈,研究表明这可以提高设备控制性能和具身感。然而,体感神经假肢肢体的广泛商业化和临床应用仍然有限。仿生神经假肢试图模仿触觉信息的自然感觉处理过程,并向神经系统传递与生物学相关的输入,为未来发展提供了一条有前景的道路。这种方法可以弥合现有神经技术与未来更接近模仿生物肢体的仿生肢体实现之间的差距。在这篇综述中,我们研究了最近的关键临床试验,这些试验通过仿生神经刺激为肢体缺失或瘫痪的个体在神经假肢肢体上纳入了体感反馈。此外,我们强调了触觉传感、编码策略、神经电子接口和创新手术技术等前沿进展的潜在影响,以创建一个临床上可行的人机接口,促进自然触觉感知和先进的闭环神经假肢控制,从而改善感觉运动障碍患者的生活质量。