Suppr超能文献

神经假体定制感觉编码的优化框架。

Optimization frameworks for bespoke sensory encoding in neuroprosthetics.

作者信息

Leong Franklin, Micera Silvestro, Shokur Solaiman

机构信息

Translational Neural Engineering Laboratory (TNE Lab), Neuro-X Institute, EPFL, Geneva, Switzerland.

出版信息

APL Bioeng. 2025 May 20;9(2):020901. doi: 10.1063/5.0249434. eCollection 2025 Jun.

Abstract

Restoring natural sensation via neuroprosthetics relies on the possibility of encoding complex and nuanced information. For example, an ideal brain-machine interface with sensory feedback would provide the user with sensation about movement, pressure, curvature, texture, etc. Despite advances in neural interfaces that allow for complex stimulation patterns (e.g., multisite stimulation or the possibility of targeting a precise neural ensemble), a key question remains: How can we best exploit the potential of these technologies? The increasing number of electrodes coupled with more parameters being explored leads to an exponential increase in the number of possible combinations, making a brute-force approach, such as systematic search, impractical. This Perspective outlines three different optimization frameworks-namely, the explicit, physiological, and self-optimized methods-allowing one to potentially converge faster toward effective parameters. Although our focus will be on the somatosensory system, these frameworks are flexible and applicable to various sensory systems (e.g., vision) and stimulator types.

摘要

通过神经假体恢复自然感觉依赖于对复杂且细微的信息进行编码的可能性。例如,一个具有感官反馈的理想脑机接口会为用户提供有关运动、压力、曲率、质地等方面的感觉。尽管神经接口技术取得了进展,能够实现复杂的刺激模式(例如,多部位刺激或靶向精确神经集群的可能性),但一个关键问题仍然存在:我们如何才能最好地利用这些技术的潜力?电极数量的增加以及更多参数的探索导致可能组合的数量呈指数级增长,使得诸如系统搜索之类的暴力方法变得不切实际。本观点概述了三种不同的优化框架,即显式、生理和自优化方法,这些方法能让人有可能更快地朝着有效参数收敛。尽管我们将重点放在体感系统上,但这些框架具有灵活性,适用于各种感觉系统(例如视觉)和刺激器类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ed/12094799/87b0f861cf28/ABPID9-000009-020901_1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验