Sylla Ndeye F, Sarr Samba, Ndiaye Ndeye M, Mutuma Bridget K, Seck Astou, Ngom Balla D, Chaker Mohamed, Manyala Ncholu
Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028, South Africa.
Laboratoire de Photonique Quantique, d'Energie et de Nano-Fabrication, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD), Dakar-Fann Dakar B.P. 5005, Senegal.
Nanomaterials (Basel). 2021 Apr 20;11(4):1056. doi: 10.3390/nano11041056.
Biomass-waste activated carbon/molybdenum oxide/molybdenum carbide ternary composites are prepared using a facile in-situ pyrolysis process in argon ambient with varying mass ratios of ammonium molybdate tetrahydrate to porous peanut shell activated carbon (PAC). The formation of MoO and MoC nanostructures embedded in the porous carbon framework is confirmed by extensive structural characterization and elemental mapping analysis. The best composite when used as electrodes in a symmetric supercapacitor (PAC/MoO/MoC-1//PAC/MoO/MoC-1) exhibited a good cell capacitance of 115 F g with an associated high specific energy of 51.8 W h kg, as well as a specific power of 0.9 kW kg at a cell voltage of 1.8 V at 1 A g. Increasing the specific current to 20 A g still showcased a device capable of delivering up to 30 W h kg specific energy and 18 kW kg of specific power. Additionally, with a great cycling stability, a 99.8% coulombic efficiency and capacitance retention of ~83% were recorded for over 25,000 galvanostatic charge-discharge cycles at 10 A g. The voltage holding test after a 160 h floating time resulted in increase of the specific capacitance from 74.7 to 90 F g at 10 A g for this storage device. The remarkable electrochemical performance is based on the synergistic effect of metal oxide/metal carbide (MoO/MoC) with the interconnected porous carbon. The PAC/MoO/MoC ternary composites highlight promising Mo-based electrode materials suitable for high-performance energy storage. Explicitly, this work also demonstrates a simple and sustainable approach to enhance the electrochemical performance of porous carbon materials.
生物质废物活性炭/氧化钼/碳化钼三元复合材料是在氩气环境中,采用简便的原位热解工艺制备的,其中四水合钼酸铵与多孔花生壳活性炭(PAC)的质量比不同。通过广泛的结构表征和元素映射分析,证实了嵌入多孔碳框架中的MoO和MoC纳米结构的形成。当用作对称超级电容器的电极时,最佳复合材料(PAC/MoO/MoC-1//PAC/MoO/MoC-1)表现出良好的电池电容,为115 F/g,具有51.8 W h/kg的相关高比能量,以及在1 A/g的电流密度下,电池电压为1.8 V时的0.9 kW/kg的比功率。将比电流增加到20 A/g时,该器件仍能提供高达30 W h/kg的比能量和18 kW/kg的比功率。此外,该复合材料具有出色的循环稳定性,在10 A/g的电流密度下,经过超过25000次恒电流充放电循环后,库仑效率为99.8%,电容保持率约为83%。对于该存储器件,在160小时的浮动时间后的电压保持测试导致在10 A/g的电流密度下,比电容从74.7 F/g增加到90 F/g。这种卓越的电化学性能基于金属氧化物/金属碳化物(MoO/MoC)与相互连接的多孔碳的协同效应。PAC/MoO/MoC三元复合材料突出了有望成为适用于高性能储能的钼基电极材料。具体而言,这项工作还展示了一种简单且可持续的方法来提高多孔碳材料的电化学性能。