Suppr超能文献

具有拓扑电荷节点面的声学半金属的实验演示

Experimental demonstration of acoustic semimetal with topologically charged nodal surface.

作者信息

Xiao Meng, Ye Liping, Qiu Chunyin, He Hailong, Liu Zhengyou, Fan Shanhui

机构信息

Department of Electrical Engineering, and Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.

Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China.

出版信息

Sci Adv. 2020 Feb 21;6(8):eaav2360. doi: 10.1126/sciadv.aav2360. eCollection 2020 Feb.

Abstract

Weyl points are zero-dimensional band degeneracy in three-dimensional momentum space that has nonzero topological charges. The presence of the topological charges protects the degeneracy points against perturbations and enables a variety of fascinating phenomena. It is so far unclear whether such charged objects can occur in higher dimensions. Here, we introduce the concept of charged nodal surface, a two-dimensional band degeneracy surface in momentum space that is topologically charged. We provide an effective Hamiltonian for this charged nodal surface and show that such a Hamiltonian can be implemented in a tight-binding model. This is followed by an experimental realization in a phononic crystal. The measured topologically protected surface arc state of such an acoustic semimetal reproduces excellently the full-wave simulations. Creating high-dimensional charged geometric objects in momentum space promises a broad range of unexplored topological physics.

摘要

外尔点是三维动量空间中具有非零拓扑电荷的零维能带简并点。拓扑电荷的存在保护简并点免受微扰,并能产生各种迷人的现象。到目前为止,尚不清楚这种带电物体是否能出现在更高维度中。在此,我们引入带电节面的概念,即动量空间中具有拓扑电荷的二维能带简并面。我们为这个带电节面提供了一个有效哈密顿量,并表明这样的哈密顿量可以在紧束缚模型中实现。接下来是在声子晶体中的实验实现。对这种声学半金属测量得到的拓扑保护表面弧态与全波模拟结果完美吻合。在动量空间中创建高维带电几何物体有望带来一系列未被探索的拓扑物理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2598/7034989/875654fe76f2/aav2360-F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验