Suppr超能文献

机器学习简介。

An Introduction to Machine Learning.

机构信息

Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland.

出版信息

Clin Pharmacol Ther. 2020 Apr;107(4):871-885. doi: 10.1002/cpt.1796. Epub 2020 Mar 3.

Abstract

In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever-increasing amount of data and computational power as well as the discovery of improved learning algorithms. However, the idea of a computer learning some abstract concept from data and applying them to yet unseen situations is not new and has been around at least since the 1950s. Many of these basic principles are very familiar to the pharmacometrics and clinical pharmacology community. In this paper, we want to introduce the foundational ideas of ML to this community such that readers obtain the essential tools they need to understand publications on the topic. Although we will not go into the very details and theoretical background, we aim to point readers to relevant literature and put applications of ML in molecular biology as well as the fields of pharmacometrics and clinical pharmacology into perspective.

摘要

在过去的几年中,机器学习(ML)和人工智能受到了大量和不断增加的数据以及计算能力以及改进的学习算法的发现的推动,迎来了一波新的宣传热潮。然而,计算机从数据中学习某些抽象概念并将其应用于尚未见过的情况的想法并不是什么新鲜事,至少从 20 世纪 50 年代就已经存在。这些基本原理中有许多都非常为药物代谢动力学和临床药理学领域所熟悉。在本文中,我们希望向这个社区介绍 ML 的基础思想,以便读者获得理解该主题相关文献所需的基本工具。虽然我们不会深入探讨非常细节和理论背景,但我们的目标是向读者指出相关文献,并将 ML 在分子生物学以及药物代谢动力学和临床药理学领域的应用放在适当的位置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f87e/7189875/4267c43c7bdb/CPT-107-871-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验