Inria, CEA, Université Paris-Saclay, Essonne, France.
Stanford University, Stanford, United States.
Elife. 2020 Mar 4;9:e53385. doi: 10.7554/eLife.53385.
Reaching a global view of brain organization requires assembling evidence on widely different mental processes and mechanisms. The variety of human neuroscience concepts and terminology poses a fundamental challenge to relating brain imaging results across the scientific literature. Existing meta-analysis methods perform statistical tests on sets of publications associated with a particular concept. Thus, large-scale meta-analyses only tackle single terms that occur frequently. We propose a new paradigm, focusing on prediction rather than inference. Our multivariate model the spatial distribution of neurological observations, given text describing an experiment, cognitive process, or disease. This approach handles text of arbitrary length and terms that are too rare for standard meta-analysis. We capture the relationships and neural correlates of 7547 neuroscience terms across 13 459 neuroimaging publications. The resulting meta-analytic tool, neuroquery.org, can ground hypothesis generation and data-analysis priors on a comprehensive view of published findings on the brain.
要形成对大脑组织的全局认识,需要整合广泛的不同心理过程和机制的证据。人类神经科学概念和术语的多样性对跨科学文献关联大脑成像结果提出了根本性的挑战。现有的荟萃分析方法对与特定概念相关的一组出版物进行统计检验。因此,大规模荟萃分析仅针对经常出现的单个术语。我们提出了一个新的范例,重点是预测而不是推理。我们的多元模型根据描述实验、认知过程或疾病的文本,预测神经观测的空间分布。这种方法可以处理任意长度的文本和对于标准荟萃分析来说过于罕见的术语。我们捕获了 7547 个神经科学术语在 13459 个神经影像学出版物中的关系和神经相关性。由此产生的荟萃分析工具 neuroquery.org 可以在综合发表的大脑研究结果的基础上,为假说生成和数据分析提供依据。