Rubin Timothy N, Koyejo Oluwasanmi, Gorgolewski Krzysztof J, Jones Michael N, Poldrack Russell A, Yarkoni Tal
Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States of America.
SurveyMonkey, San Mateo, CA, United States of America.
PLoS Comput Biol. 2017 Oct 23;13(10):e1005649. doi: 10.1371/journal.pcbi.1005649. eCollection 2017 Oct.
A central goal of cognitive neuroscience is to decode human brain activity-that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive-that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model-Generalized Correspondence Latent Dirichlet Allocation-that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to "seed" decoder priors with arbitrary images and text-enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity.
认知神经科学的一个核心目标是解码人类大脑活动,即从观察到的全脑激活模式中推断心理过程。以往的解码工作主要集中在将大脑活动分类为一小部分离散的认知状态。为了实现最大效用,解码框架必须是开放式的、系统的且上下文敏感的,也就是说,能够根据先验信息解释以任意组合呈现的众多脑状态。在此,我们朝着这一目标迈出了步伐,引入了一种基于新颖主题模型——广义对应潜在狄利克雷分配的概率解码框架,该模型从超过11000项已发表的功能磁共振成像(fMRI)研究的数据库中学习潜在主题。该模型生成了高度可解释的、空间上受限的主题,能够对全脑图像进行灵活解码。重要的是,该模型的贝叶斯性质允许人们用任意图像和文本“植入”解码器先验信息,从而使研究人员首次能够对大脑活动的全脑模式生成定量的、上下文敏感的解释。