Suppr超能文献

在功能性神经影像数据库中挖掘文本与大脑激活之间的关联。

Mining for associations between text and brain activation in a functional neuroimaging database.

作者信息

Nielsen Finn Arup, Hansen Lars Kai, Balslev Daniela

机构信息

Neurobiology Research Unit, Rigshospitalet, Copenhagen University Hospital, Denmark.

出版信息

Neuroinformatics. 2004;2(4):369-80. doi: 10.1385/NI:2:4:369.

Abstract

We describe a method for mining a neuroimaging database for associations between text and brain locations. The objective is to discover association rules between words indicative of cognitive function as described in abstracts of neuroscience papers and sets of reported stereotactic Talairach coordinates. We invoke a simple probabilistic framework in which kernel density estimates are used to model distributions of brain activation foci conditioned on words in a given abstract. The principal associations are found in the joint probability density between words and voxels. We show that the statistically motivated associations are well aligned with general neuroscientific knowledge.

摘要

我们描述了一种挖掘神经影像数据库以寻找文本与脑区位置之间关联的方法。目标是发现神经科学论文摘要中描述的指示认知功能的词汇与报告的立体定向Talairach坐标集之间的关联规则。我们采用了一个简单的概率框架,其中核密度估计用于对给定摘要中词汇条件下的脑激活焦点分布进行建模。主要关联存在于词汇与体素之间的联合概率密度中。我们表明,基于统计学得出的关联与一般神经科学知识高度吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验