Suppr超能文献

医务人员自动工时记录器(Staff Hours):移动应用程序开发。

Automatic Work-Hours Recorder for Medical Staff (Staff Hours): Mobile App Development.

机构信息

Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan.

Department of Psychology, National Taiwan University, Taipei, Taiwan.

出版信息

JMIR Mhealth Uhealth. 2020 Feb 25;8(2):e16063. doi: 10.2196/16063.

Abstract

BACKGROUND

There are numerous mobile apps for tracking work hours, but only a few of them record work hours automatically instead of relying on manual logging. No apps have been customized for medical staff, whose work schedules are highly complicated as they have both regular hours and on-call duties.

OBJECTIVE

The specific aims of this study were to (1) identify the Staff Hours app users' GPS-defined work hours, (2) examine the overtime work hours from the app-recorded total work hours and the participants' self-reported scheduled work hours, and (3) compare these app-recorded total work hours among different occupations.

METHODS

We developed an app, Staff Hours, to automatically calculate a user's work hours via GPS background data. Users can enter their scheduled hours, including regular hours and on-call duties. The app automatically generates overtime reports by comparing the app-recorded total work hours with the user-defined scheduled hours. A total of 183 volunteers (60 females and 123 males; mean age 32.98 years, SD 6.74) were included in this study. Most of the participants (162/183, 88.5%) were medical staff, and their positions were resident physicians (n=89), visiting staff (n=38), medical students (n=10), registered nurses (n=25), and non-health care professionals (non-HCPs; n=21).

RESULTS

The total work hours (mean 55.69 hours, SD 21.34) of the 183 participants were significantly higher than their scheduled work hours (mean 50.67 hours, SD 21.44; P=.01). Medical staff had significantly longer total work hours (mean 57.01 hours, SD 21.20) than non-HCPs (mean 45.48 hours, SD 20.08; P=.02). Residents (mean 60.38 hours, SD 18.67) had significantly longer work hours than visiting staff (mean 51.42 hours, SD 20.33; P=.03) and non-HCPs (mean 45.48 hours, SD 20.08; P=.004).

CONCLUSIONS

Staff Hours is the first automatic GPS location-based app designed for medical staff to track work hours and calculate overtime. For medical staff, this app could keep complete and accurate records of work hours in real time, reduce bias, and allow for better complying with labor regulations.

摘要

背景

有许多用于跟踪工作时间的移动应用程序,但只有少数应用程序可以自动记录工作时间,而不是依赖手动记录。没有专门为医务人员定制的应用程序,因为他们的工作时间表非常复杂,既有常规工作时间,也有值班工作时间。

目的

本研究的具体目的是:(1) 通过 GPS 定义的工作时间确定 Staff Hours 应用程序用户的工作时间;(2) 通过应用程序记录的总工作时间和参与者的自我报告的预定工作时间来检查加班工作时间;(3) 比较不同职业的应用程序记录的总工作时间。

方法

我们开发了一个应用程序 Staff Hours,通过 GPS 背景数据自动计算用户的工作时间。用户可以输入他们的预定工作时间,包括常规工作时间和值班工作时间。该应用程序通过将记录的总工作时间与用户定义的预定工作时间进行比较,自动生成加班报告。共有 183 名志愿者(60 名女性,123 名男性;平均年龄 32.98 岁,标准差 6.74)参与了这项研究。大多数参与者(183 名中的 162 名,88.5%)为医务人员,他们的职位包括住院医师(89 名)、访问医生(38 名)、医学生(10 名)、注册护士(25 名)和非卫生保健专业人员(非 HCPs;21 名)。

结果

183 名参与者的总工作时间(平均 55.69 小时,标准差 21.34)明显高于他们的预定工作时间(平均 50.67 小时,标准差 21.44;P=.01)。医务人员的总工作时间(平均 57.01 小时,标准差 21.20)明显长于非 HCPs(平均 45.48 小时,标准差 20.08;P=.02)。住院医师(平均 60.38 小时,标准差 18.67)的工作时间明显长于访问医生(平均 51.42 小时,标准差 20.33;P=.03)和非 HCPs(平均 45.48 小时,标准差 20.08;P=.004)。

结论

Staff Hours 是第一款专为医务人员设计的自动 GPS 位置跟踪应用程序,用于跟踪工作时间并计算加班时间。对于医务人员来说,这款应用程序可以实时记录完整、准确的工作时间,减少偏差,并更好地遵守劳动法规。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba6f/7064958/938fc7f97499/mhealth_v8i2e16063_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验