Suppr超能文献

高血糖通过 -连接的 GlcNAcylation 和 CaMKII 激活使小鼠心室肌细胞中的细胞溶质活性氧物种增加。

Hyperglycemia Acutely Increases Cytosolic Reactive Oxygen Species via -linked GlcNAcylation and CaMKII Activation in Mouse Ventricular Myocytes.

机构信息

From the Department of Pharmacology, University of California, Davis School of Medicine (S.L., Z.L., J.B., D.M.B.).

Department of Cardiology, Renji Hospital School of Medicine, Jiaotong University, Shanghai, China (X.L.).

出版信息

Circ Res. 2020 May 8;126(10):e80-e96. doi: 10.1161/CIRCRESAHA.119.316288. Epub 2020 Mar 5.

Abstract

RATIONALE

Diabetes mellitus is a complex, multisystem disease, affecting large populations worldwide. Chronic CaMKII (Ca/calmodulin-dependent kinase II) activation may occur in diabetes mellitus and be arrhythmogenic. Diabetic hyperglycemia was shown to activate CaMKII by (1) -linked attachment of N-acetylglucosamine (-GlcNAc) at S280 leading to arrhythmia and (2) a reactive oxygen species (ROS)-mediated oxidation of CaMKII that can increase postinfarction mortality.

OBJECTIVE

To test whether high extracellular glucose (Hi-Glu) promotes ventricular myocyte ROS generation and the role played by CaMKII.

METHODS AND RESULTS

We tested how extracellular Hi-Glu influences ROS production in adult ventricular myocytes, using DCF (2',7'-dichlorodihydrofluorescein diacetate) and genetically targeted Grx-roGFP2 redox sensors. Hi-Glu (30 mmol/L) significantly increased the rate of ROS generation-an effect prevented in myocytes pretreated with CaMKII inhibitor KN-93 or from either global or cardiac-specific CaMKIIδ KO (knockout) mice. CaMKII KO or inhibition also prevented Hi-Glu-induced sarcoplasmic reticulum Ca release events (Ca sparks). Thus, CaMKII activation is required for Hi-Glu-induced ROS generation and sarcoplasmic reticulum Ca leak in cardiomyocytes. To test the involvement of -GlcNAc-CaMKII pathway, we inhibited GlcNAcylation removal by Thiamet G (ThmG), which mimicked the Hi-Glu-induced ROS production. Conversely, inhibition of GlcNAcylation (OSMI-1 [(αR)-α-[[(1,2-dihydro-2-oxo-6-quinolinyl)sulfonyl]amino]-N-(2-furanylmethyl)-2-methoxy-N-(2-thienylmethyl)-benzeneacetamide]) prevented ROS induction in response to either Hi-Glu or ThmG. Moreover, in a CRSPR-based knock-in mouse in which the functional GlcNAcylation site on CaMKIIδ was ablated (S280A), neither Hi-Glu nor ThmG induced myocyte ROS generation. So CaMKIIδ-S280 is required for the Hi-Glu-induced (and GlcNAc dependent) ROS production. To identify the ROS source(s), we used different inhibitors of NOX (NADPH oxidase) 2 (Gp91ds-tat peptide), NOX4 (GKT137831), mitochondrial ROS (MitoTempo), and NOS (NO synthase) pathway inhibitors (L-NAME, L-NIO, and L-NPA). Only NOX2 inhibition or KO prevented Hi-Glu/ThmG-induced ROS generation.

CONCLUSIONS

Diabetic hyperglycemia induces acute cardiac myocyte ROS production by NOX2 that requires -GlcNAcylation of CaMKIIδ at S280. This novel ROS induction may exacerbate pathological consequences of diabetic hyperglycemia.

摘要

背景

糖尿病是一种复杂的多系统疾病,影响着全球大量人群。慢性 CaMKII(钙/钙调蛋白依赖性激酶 II)的激活可能发生在糖尿病中,并具有致心律失常作用。糖尿病高血糖通过以下两种方式激活 CaMKII:(1)通过 S280 处的 N-乙酰葡萄糖胺(-GlcNAc)的 - 连接附着导致心律失常;(2)活性氧物质(ROS)介导的 CaMKII 氧化,这会增加梗死后的死亡率。

目的

检测高细胞外葡萄糖(Hi-Glu)是否促进心室肌细胞产生 ROS,以及 CaMKII 在此过程中的作用。

方法和结果

我们使用 DCF(2',7'-二氯二氢荧光素二乙酸酯)和基因靶向 Grx-roGFP2 氧化还原传感器来检测 Hi-Glu 如何影响成年心室肌细胞中 ROS 的产生。Hi-Glu(30mmol/L)显著增加 ROS 的产生速率-这种作用可以被 CaMKII 抑制剂 KN-93 预处理或从全局或心脏特异性 CaMKIIδ KO(敲除)小鼠中预防。CaMKII KO 或抑制也可以防止 Hi-Glu 诱导的肌浆网 Ca 释放事件(Ca 火花)。因此,CaMKII 的激活是 Hi-Glu 诱导的 ROS 产生和心肌细胞肌浆网 Ca 渗漏所必需的。为了检测 GlcNAc-CaMKII 途径的参与,我们用 Thiamet G(ThmG)抑制 GlcNAc 去除,这模拟了 Hi-Glu 诱导的 ROS 产生。相反,抑制 GlcNAcylation(OSMI-1[(αR)-α-[[(1,2-二氢-2-氧代-6-喹啉基)磺酰基]氨基]-N-(2-呋喃基甲基)-2-甲氧基-N-(2-噻吩基甲基)-苯乙酰胺])可防止 Hi-Glu 或 ThmG 引起的 ROS 诱导。此外,在功能 GlcNAcylation 位点被破坏的基于 CRSPR 的基因敲入小鼠(CaMKIIδ-S280A)中,Hi-Glu 或 ThmG 均不会引起心肌细胞 ROS 的产生。因此,CaMKIIδ-S280 是 Hi-Glu 诱导(和 GlcNAc 依赖性)ROS 产生所必需的。为了确定 ROS 的来源,我们使用了不同的 NADPH 氧化酶 2(NOX2)(Gp91ds-tat 肽)、NOX4(GKT137831)、线粒体 ROS(MitoTempo)和 NOS(一氧化氮合酶)途径抑制剂(L-NAME、L-NIO 和 L-NPA)。只有 NOX2 抑制或 KO 可防止 Hi-Glu/ThmG 诱导的 ROS 生成。

结论

糖尿病高血糖通过 NOX2 诱导急性心肌细胞产生 ROS,这需要 CaMKIIδ 在 S280 处的 GlcNAcylation。这种新的 ROS 诱导可能会加剧糖尿病高血糖的病理后果。

相似文献

2
Hyperglycemia regulates cardiac K channels via O-GlcNAc-CaMKII and NOX2-ROS-PKC pathways.
Basic Res Cardiol. 2020 Nov 25;115(6):71. doi: 10.1007/s00395-020-00834-8.
4
NADPH oxidase 2 mediates angiotensin II-dependent cellular arrhythmias via PKA and CaMKII.
J Mol Cell Cardiol. 2014 Oct;75:206-15. doi: 10.1016/j.yjmcc.2014.07.011. Epub 2014 Jul 27.
5
CaMKII Met281/282 oxidation is not required for recovery of calcium transients during acidosis.
Am J Physiol Heart Circ Physiol. 2021 Mar 1;320(3):H1199-H1212. doi: 10.1152/ajpheart.00040.2020. Epub 2021 Jan 15.
6
Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation.
Nature. 2013 Oct 17;502(7471):372-6. doi: 10.1038/nature12537. Epub 2013 Sep 29.
9
Activation of CaMKII as a key regulator of reactive oxygen species production in diabetic rat heart.
J Mol Cell Cardiol. 2012 May;52(5):1103-11. doi: 10.1016/j.yjmcc.2012.02.006. Epub 2012 Feb 25.

引用本文的文献

1
UCP2 inhibition exaggerates diabetic cardiomyopathy by facilitating the activation of NLRP3 and pyroptosis.
Diabetol Metab Syndr. 2025 Jul 16;17(1):267. doi: 10.1186/s13098-025-01855-w.
2
Beyond conventional therapy: NOX4 as a promising target in cardiomyopathy.
Mol Biol Rep. 2025 Jul 11;52(1):704. doi: 10.1007/s11033-025-10818-3.
3
Ferroptosis: A novel therapeutic target for diabetic cardiomyopathy.
World J Diabetes. 2025 Jun 15;16(6):104665. doi: 10.4239/wjd.v16.i6.104665.
4
Systemic Comorbidities as Modifiers of Outcome After Endovascular Thrombectomy for Acute Ischemic Stroke.
Curr Neurol Neurosci Rep. 2025 May 30;25(1):38. doi: 10.1007/s11910-025-01427-5.
5
TRPA1 exacerbates selective retinal ganglion cell vulnerability under acute ocular hypertension.
Acta Neuropathol Commun. 2025 Apr 5;13(1):70. doi: 10.1186/s40478-025-01974-5.
7
P21-Activated Kinase 2 as a Novel Target for Ventricular Tachyarrhythmias Associated with Cardiac Adrenergic Stress and Hypertrophy.
Adv Sci (Weinh). 2025 May;12(17):e2411987. doi: 10.1002/advs.202411987. Epub 2025 Mar 11.
8
Enhancement of adipose stem cell quality via Cu-MON: Transcriptome and bioinformatics analysis of normal and diabetic stem cells.
FASEB Bioadv. 2025 Jan 18;7(3):e1485. doi: 10.1096/fba.2024-00153. eCollection 2025 Mar.
9
Modeling autoregulation of cardiac excitation-Ca-contraction and arrhythmogenic activities in response to mechanical load changes.
iScience. 2025 Jan 10;28(2):111788. doi: 10.1016/j.isci.2025.111788. eCollection 2025 Feb 21.
10
Positive feedback between RyR phosphorylation and Ca leak promotes heterogeneous Ca release.
Biophys J. 2025 Mar 4;124(5):717-721. doi: 10.1016/j.bpj.2025.01.023. Epub 2025 Jan 31.

本文引用的文献

1
GLUT4 expression and glucose transport in human induced pluripotent stem cell-derived cardiomyocytes.
PLoS One. 2019 Jul 25;14(7):e0217885. doi: 10.1371/journal.pone.0217885. eCollection 2019.
2
O-GlcNAcylation of Histone Deacetylase 4 Protects the Diabetic Heart From Failure.
Circulation. 2019 Aug 13;140(7):580-594. doi: 10.1161/CIRCULATIONAHA.117.031942. Epub 2019 Jun 14.
3
Exposure to Secondhand Smoke and Arrhythmogenic Cardiac Alternans in a Mouse Model.
Environ Health Perspect. 2018 Dec;126(12):127001. doi: 10.1289/EHP3664.
5
NADPH oxidase activation in neutrophils: Role of the phosphorylation of its subunits.
Eur J Clin Invest. 2018 Nov;48 Suppl 2:e12951. doi: 10.1111/eci.12951. Epub 2018 Jun 3.
7
Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart.
Heart Fail Rev. 2018 Jan;23(1):37-54. doi: 10.1007/s10741-017-9663-y.
8
An Automated Platform for Assessment of Congenital and Drug-Induced Arrhythmia with hiPSC-Derived Cardiomyocytes.
Front Physiol. 2017 Oct 11;8:766. doi: 10.3389/fphys.2017.00766. eCollection 2017.
9
Calcium Signaling and Transcriptional Regulation in Cardiomyocytes.
Circ Res. 2017 Sep 29;121(8):1000-1020. doi: 10.1161/CIRCRESAHA.117.310355.
10
Id genes are essential for early heart formation.
Genes Dev. 2017 Jul 1;31(13):1325-1338. doi: 10.1101/gad.300400.117. Epub 2017 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验