Crisenza Giacomo E M, Mazzarella Daniele, Melchiorre Paolo
ICIQ - Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain.
ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
J Am Chem Soc. 2020 Mar 25;142(12):5461-5476. doi: 10.1021/jacs.0c01416. Epub 2020 Mar 12.
The association of an electron-rich substrate with an electron-accepting molecule can generate a new molecular aggregate in the ground state, called an electron donor-acceptor (EDA) complex. Even when the two precursors do not absorb visible light, the resulting EDA complex often does. In 1952, Mulliken proposed a quantum-mechanical theory to rationalize the formation of such colored EDA complexes. However, and besides a few pioneering studies in the 20th century, it is only in the past few years that the EDA complex photochemistry has been recognized as a powerful strategy for expanding the potential of visible-light-driven radical synthetic chemistry. Here, we explain why this photochemical synthetic approach was overlooked for so long. We critically discuss the historical context, scientific reasons, serendipitous observations, and landmark discoveries that were essential for progress in the field. We also outline future directions and identify the key advances that are needed to fully exploit the potential of the EDA complex photochemistry.
富电子底物与电子接受分子的结合可以在基态下产生一种新的分子聚集体,称为电子供体-受体(EDA)络合物。即使两种前体不吸收可见光,生成的EDA络合物却常常会吸收。1952年,穆利肯提出了一种量子力学理论来解释这种有色EDA络合物的形成。然而,除了20世纪的一些开创性研究外,直到最近几年,EDA络合物光化学才被认为是扩展可见光驱动自由基合成化学潜力的有力策略。在这里,我们解释了这种光化学合成方法为何长期被忽视。我们批判性地讨论了历史背景、科学原因、偶然观察结果以及对该领域进展至关重要的里程碑式发现。我们还概述了未来的方向,并确定了充分发挥EDA络合物光化学潜力所需的关键进展。