Luo Hong, Fang Xiang, Li Chengfeng, Dai Xinhua, Ru Ning, You Minmin, He Tao, Wu Pin Chieh, Wang Zhanshan, Shi Yuzhi, Cheng Xinbin
Institute of Precision Optical Engineering School of Physics Science and Engineering Tongji University Shanghai 200092 China.
MOE Key Laboratory of Advanced Micro-Structured Materials Shanghai 200092 China.
Small Sci. 2023 Aug 17;3(9):2300100. doi: 10.1002/smsc.202300100. eCollection 2023 Sep.
Sorting nanoparticles is of paramount importance in numerous physical, chemical, and biomedical applications. Current technologies for sorting dielectric nanoparticles have a common size limit and resolution approximately of 20 and 10 nm, respectively. It remains a grand challenge to push the limit. Herein, the new physics that deploys toroidal and multipole responses in a dielectric metasurface to exert strong and distinguishable optical forces on sub-10 nm nanoparticles is unravelled. The electric toroidal dipole, electric dipole, and quadrupole emerge with distinct light and force patterns, which can be leveraged to promise unprecedented high-precision manipulations, such as sorting sub-10 nm polystyrene nanoparticles at 1 nm resolution, sorting 20 nm proteins/exsomes at 3 nm resolution, conveying, and concentrating 100 nm gold nanoparticles. Remarkably, the design can also be employed to screen out medium-sized nanoparticles from a mixture of nanoparticles with over three sizes. This optofluidic manipulation platform opens the new way to explore intriguing optical modes for the powerful manipulation of nanoparticles with nanometer precisions and low laser powers.
在众多物理、化学和生物医学应用中,对纳米颗粒进行分选至关重要。目前用于分选介电纳米颗粒的技术分别存在约20纳米和10纳米的常见尺寸限制和分辨率。突破这一限制仍然是一项巨大的挑战。在此,我们揭示了一种新的物理原理,即在介电超表面中利用环形和多极响应,对尺寸小于10纳米的纳米颗粒施加强大且可区分的光学力。电环形偶极、电偶极和四极呈现出独特的光和力模式,可用于实现前所未有的高精度操作,如以1纳米分辨率分选尺寸小于10纳米的聚苯乙烯纳米颗粒、以3纳米分辨率分选20纳米的蛋白质/外泌体、输送和浓缩100纳米的金纳米颗粒。值得注意的是,该设计还可用于从三种以上尺寸的纳米颗粒混合物中筛选出中等尺寸的纳米颗粒。这种光流体操纵平台为探索有趣的光学模式开辟了新途径,可实现对纳米颗粒的强大操作,具有纳米级精度和低激光功率。