Suppr超能文献

石墨烯中的应变调制超晶格

Strain Modulated Superlattices in Graphene.

作者信息

Banerjee Riju, Nguyen Viet-Hung, Granzier-Nakajima Tomotaroh, Pabbi Lavish, Lherbier Aurelien, Binion Anna Ruth, Charlier Jean-Christophe, Terrones Mauricio, Hudson Eric William

机构信息

Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Chemin des étoiles 8, B-1348 Louvain-la-Neuve, Belgium.

出版信息

Nano Lett. 2020 May 13;20(5):3113-3121. doi: 10.1021/acs.nanolett.9b05108. Epub 2020 Mar 11.

Abstract

Numerous theoretically proposed devices and novel phenomena have sought to take advantage of the intense pseudogauge fields that can arise in strained graphene. Many of these proposals, however, require fields to oscillate with a spatial frequency smaller than the magnetic length, while to date only the generation and effects of fields varying at a much larger length scale have been reported. Here, we describe the creation of short wavelength, periodic pseudogauge-fields using rippled graphene under extreme (>10%) strain and study of its effects on Dirac electrons. Combining scanning tunneling microscopy and atomistic calculations, we find that spatially oscillating strain generates a new quantization different from the familiar Landau quantization. Graphene ripples also cause large variations in carbon-carbon bond length, creating an effective electronic superlattice within a single graphene sheet. Our results thus also establish a novel approach of synthesizing effective 2D lateral heterostructures by periodically modulating lattice strain.

摘要

众多理论上提出的器件和新奇现象都试图利用应变石墨烯中可能出现的强赝规范场。然而,这些提议中的许多都要求场以小于磁长度的空间频率振荡,而迄今为止,仅报道了在大得多的长度尺度上变化的场的产生及其效应。在此,我们描述了在极端(>10%)应变下使用波纹状石墨烯创建短波长、周期性赝规范场,并研究其对狄拉克电子的影响。结合扫描隧道显微镜和原子计算,我们发现空间振荡应变产生了一种不同于常见朗道量子化的新量子化。石墨烯波纹还会导致碳 - 碳键长的大幅变化,在单个石墨烯片内形成有效的电子超晶格。因此,我们的结果还确立了一种通过周期性调制晶格应变来合成有效二维横向异质结构的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验