Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, United States.
State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China.
Nano Lett. 2023 Mar 22;23(6):2397-2404. doi: 10.1021/acs.nanolett.3c00345. Epub 2023 Mar 13.
Quantum materials, particularly Dirac materials with linearly dispersing bands, can be effectively tuned by strain-induced lattice distortions leading to a pseudomagnetic field that strongly modulates their electronic properties. Here, we grow kagome magnet FeSn films, consisting of alternatingly stacked Sn honeycomb (stanene) and FeSn kagome layers, on SrTiO(111) substrates by molecular beam epitaxy. Using scanning tunneling microscopy/spectroscopy, we show that the Sn honeycomb layer can be periodically deformed by epitaxial strain for a film thickness below 10 nm, resulting in differential conductance peaks consistent with Landau levels generated by a pseudomagnetic field greater than 1000 T. Our findings demonstrate the feasibility of strain engineering the electronic properties of topological magnets at the nanoscale.
量子材料,特别是具有线性色散能带的狄拉克材料,可以通过应变诱导的晶格畸变进行有效调控,从而产生一个强烈调制其电子特性的赝磁场。在这里,我们通过分子束外延法在 SrTiO(111) 衬底上生长了由交替堆叠的 Sn 蜂窝(斯坦纳烯)和 FeSn kagome 层组成的 kagome 磁铁 FeSn 薄膜。通过扫描隧道显微镜/光谱学,我们表明对于厚度小于 10nm 的薄膜,Sn 蜂窝层可以通过外延应变周期性地变形,从而产生与由大于 1000T 的赝磁场产生的朗道能级一致的差分电导峰。我们的发现证明了在纳米尺度上通过应变工程来调控拓扑磁体电子特性的可行性。