Suppr超能文献

利用图案化介电超晶格对二维材料进行能带结构工程调控。

Band structure engineering of 2D materials using patterned dielectric superlattices.

作者信息

Forsythe Carlos, Zhou Xiaodong, Watanabe Kenji, Taniguchi Takashi, Pasupathy Abhay, Moon Pilkyung, Koshino Mikito, Kim Philip, Dean Cory R

机构信息

Department of Physics, Columbia University, New York, NY, USA.

Laboratory of Advanced Materials, Fudan University, Shanghai, China.

出版信息

Nat Nanotechnol. 2018 Jul;13(7):566-571. doi: 10.1038/s41565-018-0138-7. Epub 2018 May 7.

Abstract

The ability to manipulate electrons in two-dimensional materials with external electric fields provides a route to synthetic band engineering. By imposing artificially designed and spatially periodic superlattice potentials, electronic properties can be further altered beyond the constraints of naturally occurring atomic crystals. Here, we report a new approach to fabricate high-mobility superlattice devices by integrating surface dielectric patterning with atomically thin van der Waals materials. By separating the device assembly and superlattice fabrication processes, we address the intractable trade-off between device processing and mobility degradation that constrains superlattice engineering in conventional systems. The improved electrostatics of atomically thin materials allows smaller wavelength superlattice patterns relative to previous demonstrations. Moreover, we observe the formation of replica Dirac cones in ballistic graphene devices with sub-40 nm wavelength superlattices and report fractal Hofstadter spectra under large magnetic fields from superlattices with designed lattice symmetries that differ from that of the host crystal. Our results establish a robust and versatile technique for band structure engineering of graphene and related van der Waals materials with dynamic tunability.

摘要

利用外部电场操控二维材料中的电子的能力为合成能带工程提供了一条途径。通过施加人工设计的、空间周期性的超晶格势,电子性质可以在自然存在的原子晶体的限制之外进一步改变。在此,我们报告了一种通过将表面介电图案化与原子级薄的范德华材料相结合来制造高迁移率超晶格器件的新方法。通过分离器件组装和超晶格制造过程,我们解决了传统系统中限制超晶格工程的器件加工与迁移率退化之间难以解决的权衡问题。原子级薄材料改善的静电学特性允许相对于先前的演示实现更小波长的超晶格图案。此外,我们在具有亚40纳米波长超晶格的弹道石墨烯器件中观察到复制狄拉克锥的形成,并报告了在具有与主体晶体不同的设计晶格对称性的超晶格的大磁场下的分形霍夫施塔特光谱。我们的结果为具有动态可调性的石墨烯及相关范德华材料的能带结构工程建立了一种强大且通用的技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验