Suppr超能文献

用于交通性脑积水的三维打印微机电系统水凝胶阀

Three-Dimensionally Printed Microelectromechanical-System Hydrogel Valve for Communicating Hydrocephalus.

作者信息

Lee Seunghyun, Bristol Ruth E, Preul Mark C, Chae Junseok

机构信息

School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85281, United States.

Phoenix Children's Hospital, Phoenix, Arizona 85016, United States.

出版信息

ACS Sens. 2020 May 22;5(5):1398-1404. doi: 10.1021/acssensors.0c00181. Epub 2020 Mar 16.

Abstract

Hydrocephalus (HCP) is a chronic neurological brain disorder caused by a malfunction of the cerebrospinal fluid (CSF) drainage mechanism in the brain. The current standard method to treat HCP is a shunt system. Unfortunately, the shunt system suffers from complications including mechanical malfunctions, obstructions, infections, blockage, breakage, overdrainage, and/or underdrainage. Some of these complications may be attributed to the shunts' physically large and lengthy course making them susceptible to external forces, siphoning effects, and risks of infection. Additionally, intracranial catheters artificially traverse the brain and drain the ventricle rather than the subarachnoid space. We report a 3D-printed microelectromechanical system-based implantable valve to improve HCP treatment. This device provides an alternative approach targeting restoration of near-natural CSF dynamics by artificial arachnoid granulations (AGs), natural components for CSF drainage in the brain. The valve, made of hydrogel, aims to regulate the CSF flow between the subarachnoid space and the superior sagittal sinus, in essence, substituting for the obstructed arachnoid granulations. The valve, operating in a fully passive manner, utilizes the hydrogel swelling feature to create nonzero cracking pressure, ≈ 47.4 ± 6.8 mmHO, as well as minimize reverse flow leakage, ≈ 0.7 μL/min on benchtop experiments. The additional measurements performed in realistic experimental setups using a fixed sheep brain also deliver comparable results, ≈ 113.0 ± 9.8 mmHO and ≈ 3.7 μL/min. In automated loop functional tests, the valve maintains functionality for a maximum of 1536 cycles with the variance of 44.5 mmHO < < 61.1 mmHO and negligible average reverse flow leakage rates of ∼0.3 μL/min.

摘要

脑积水(HCP)是一种慢性神经性脑部疾病,由大脑中脑脊液(CSF)引流机制故障引起。目前治疗HCP的标准方法是分流系统。不幸的是,分流系统存在并发症,包括机械故障、阻塞、感染、堵塞、破裂、过度引流和/或引流不足。其中一些并发症可能归因于分流管在体内行程长且体积大,使其易受外力、虹吸效应和感染风险影响。此外,颅内导管人为穿过大脑并引流脑室而非蛛网膜下腔。我们报告了一种基于3D打印微机电系统的植入式瓣膜,以改善HCP治疗。该装置提供了一种替代方法,旨在通过人工蛛网膜颗粒(AGs)恢复接近自然的脑脊液动力学,AGs是大脑中脑脊液引流的天然组成部分。该瓣膜由水凝胶制成,旨在调节蛛网膜下腔和上矢状窦之间的脑脊液流动,本质上替代受阻的蛛网膜颗粒。该瓣膜以完全被动的方式运行,利用水凝胶膨胀特性产生非零破裂压力,约为47.4±6.8 mmHO,同时在台式实验中将逆流泄漏最小化,约为0.7μL/min。在使用固定羊脑的实际实验装置中进行的额外测量也得出了类似的结果,约为113.0±9.8 mmHO和约为3.7μL/min。在自动循环功能测试中,该瓣膜最多可维持1536个循环的功能,压力变化范围为44.5 mmHO << 61.1 mmHO,平均逆流泄漏率可忽略不计约为0.3μL/min。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验