Suppr超能文献

生理和病理缺氧条件下红细胞的适应性代谢重编程

Erythrocyte adaptive metabolic reprogramming under physiological and pathological hypoxia.

作者信息

D'Alessandro Angelo, Xia Yang

机构信息

Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado.

Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston.

出版信息

Curr Opin Hematol. 2020 May;27(3):155-162. doi: 10.1097/MOH.0000000000000574.

Abstract

PURPOSE OF REVIEW

The erythrocyte is the most abundant cell type in our body, acting as both a carrier/deliverer and sensor of oxygen (O2). Erythrocyte O2 delivery capacity is finely regulated by sophisticated metabolic control. In recent years, unbiased and robust human metabolomics screening and mouse genetic studies have advanced erythroid research revealing the differential role of erythrocyte hypoxic metabolic reprogramming in normal individuals at high altitudes and patients facing hypoxia, such as sickle cell disease (SCD) and chronic kidney disease (CKD). Here we summarize recent progress and highlight potential therapeutic possibilities.

RECENT FINDINGS

Initial studies showed that elevated soluble CD73 (sCD73, converts AMP to adenosine) results in increased circulating adenosine that activates the A2B adenosine receptor (ADORA2B). Signaling through this axis is co-operatively strengthened by erythrocyte-specific synthesis of sphingosine-1-phosphate (S1P). Ultimately, these mechanisms promote the generation of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific allosteric modulator that decreases haemoglobin--O2-binding affinity, and thus, induces deoxygenated sickle Hb (deoxyHbS), deoxyHbS polymerization, sickling, chronic inflammation and tissue damage in SCD. Similar to SCD, plasma adenosine and erythrocyte S1P are elevated in humans ascending to high altitude. At high altitude, these two metabolites are beneficial to induce erythrocyte metabolic reprogramming and the synthesis of 2,3-BPG, and thus, increase O2 delivery to counteract hypoxic tissue damage. Follow-up studies showed that erythrocyte equilibrative nucleoside transporter 1 (eENT1) is a key purinergic cellular component controlling plasma adenosine in humans at high altitude and mice under hypoxia and underlies the quicker and higher elevation of plasma adenosine upon re-ascent because of prior hypoxia-induced degradation of eENT1. More recent studies demonstrated the beneficial role of erythrocyte ADORA2B-mediated 2,3-BPG production in CKD.

SUMMARY

Taken together, these findings revealed the differential role of erythrocyte hypoxic metabolic reprogramming in normal humans at high altitude and patients with CKD vs. SCD patients and immediately suggest differential and precision therapies to counteract hypoxia among these groups.

摘要

综述目的

红细胞是人体中最丰富的细胞类型,兼具氧气(O₂)载体/输送者和传感器的功能。红细胞的氧气输送能力通过复杂的代谢控制进行精细调节。近年来,无偏差且强大的人类代谢组学筛查和小鼠遗传学研究推动了红系研究的进展,揭示了红细胞缺氧代谢重编程在高海拔正常个体以及患有缺氧疾病(如镰状细胞病(SCD)和慢性肾脏病(CKD))患者中的不同作用。在此,我们总结近期进展并强调潜在的治疗可能性。

近期发现

初步研究表明,可溶性CD73(sCD73,将AMP转化为腺苷)水平升高会导致循环腺苷增加,从而激活A2B腺苷受体(ADORA2B)。红细胞特异性合成的鞘氨醇-1-磷酸(S1P)协同增强了通过该轴的信号传导。最终,这些机制促进了2,3-二磷酸甘油酸(2,3-BPG)的生成,2,3-BPG是一种红细胞特异性变构调节剂,可降低血红蛋白与氧气的结合亲和力,进而诱导脱氧镰状血红蛋白(deoxyHbS)、deoxyHbS聚合、镰变、慢性炎症和SCD中的组织损伤。与SCD类似,在上升到高海拔的人群中,血浆腺苷和红细胞S1P水平会升高。在高海拔地区,这两种代谢产物有利于诱导红细胞代谢重编程和2,3-BPG的合成,从而增加氧气输送以抵消缺氧性组织损伤。后续研究表明,红细胞平衡核苷转运体1(eENT1)是控制高海拔人群和缺氧小鼠血浆腺苷的关键嘌呤能细胞成分,并且是由于先前缺氧诱导的eENT1降解导致再次上升时血浆腺苷更快、更高程度升高的原因。最近的研究证明了红细胞ADORA2B介导的2,3-BPG生成在CKD中的有益作用。

总结

综上所述,这些发现揭示了红细胞缺氧代谢重编程在高海拔正常人和CKD患者与SCD患者中的不同作用,并立即提示了针对这些群体对抗缺氧的差异化和精准治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3701/8900923/e80d4dfe3945/nihms-1602419-f0001.jpg

相似文献

10
Adenosine signaling in normal and sickle erythrocytes and beyond.腺苷信号在正常和镰状红细胞中的作用及其他方面。
Microbes Infect. 2012 Aug;14(10):863-73. doi: 10.1016/j.micinf.2012.05.005. Epub 2012 May 23.

引用本文的文献

4
[Progress in multiomics research on high altitude polycythemia].[高原红细胞增多症的多组学研究进展]
Zhonghua Xue Ye Xue Za Zhi. 2024 Aug 14;45(8):795-800. doi: 10.3760/cma.j.cn121090-20240318-00100.
7
Metabolic regulation of erythrocyte development and disorders.红细胞发育与疾病的代谢调控
Exp Hematol. 2024 Mar;131:104153. doi: 10.1016/j.exphem.2024.104153. Epub 2024 Jan 17.

本文引用的文献

5
Erythrocyte purinergic signaling components underlie hypoxia adaptation.红细胞嘌呤能信号成分是低氧适应的基础。
J Appl Physiol (1985). 2017 Oct 1;123(4):951-956. doi: 10.1152/japplphysiol.00155.2017. Epub 2017 Jun 1.
8
AltitudeOmics: Red Blood Cell Metabolic Adaptation to High Altitude Hypoxia.海拔组学:红细胞对高原低氧的代谢适应性
J Proteome Res. 2016 Oct 7;15(10):3883-3895. doi: 10.1021/acs.jproteome.6b00733. Epub 2016 Sep 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验