Suppr超能文献

药物-靶点相互作用预测:端到端深度学习方法。

Drug-Target Interaction Prediction: End-to-End Deep Learning Approach.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2364-2374. doi: 10.1109/TCBB.2020.2977335. Epub 2021 Dec 8.

Abstract

The discovery of potential Drug-Target Interactions (DTIs) is a determining step in the drug discovery and repositioning process, as the effectiveness of the currently available antibiotic treatment is declining. Although putting efforts on the traditional in vivo or in vitro methods, pharmaceutical financial investment has been reduced over the years. Therefore, establishing effective computational methods is decisive to find new leads in a reasonable amount of time. Successful approaches have been presented to solve this problem but seldom protein sequences and structured data are used together. In this paper, we present a deep learning architecture model, which exploits the particular ability of Convolutional Neural Networks (CNNs) to obtain 1D representations from protein sequences (amino acid sequence) and compounds SMILES (Simplified Molecular Input Line Entry System) strings. These representations can be interpreted as features that express local dependencies or patterns that can then be used in a Fully Connected Neural Network (FCNN), acting as a binary classifier. The results achieved demonstrate that using CNNs to obtain representations of the data, instead of the traditional descriptors, lead to improved performance. The proposed end-to-end deep learning method outperformed traditional machine learning approaches in the correct classification of both positive and negative interactions.

摘要

发现潜在的药物-靶点相互作用(DTIs)是药物发现和重新定位过程中的决定性步骤,因为目前可用的抗生素治疗效果正在下降。尽管在传统的体内或体外方法上投入了大量精力,但近年来医药行业的金融投资一直在减少。因此,建立有效的计算方法对于在合理的时间内找到新的线索是至关重要的。已经提出了成功的方法来解决这个问题,但很少将蛋白质序列和结构化数据一起使用。在本文中,我们提出了一种深度学习架构模型,该模型利用卷积神经网络(CNN)从蛋白质序列(氨基酸序列)和化合物 SMILES(简化分子输入线输入系统)字符串中获取 1D 表示的特殊能力。这些表示可以解释为表达局部依赖关系或模式的特征,然后可以在全连接神经网络(FCNN)中使用,充当二进制分类器。所取得的结果表明,使用 CNN 获得数据的表示,而不是传统的描述符,可提高性能。与传统的机器学习方法相比,该端到端深度学习方法在正确分类阳性和阴性相互作用方面表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验