Theoretical Physics, Saarland University, Saarbrücken, Germany.
Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
PLoS One. 2020 Mar 6;15(3):e0229382. doi: 10.1371/journal.pone.0229382. eCollection 2020.
Conversion of vacuum fluctuations into real particles was first predicted by L. Parker considering an expanding universe, followed in S. Hawking's work on black hole radiation. Since their experimental observation is challenging, analogue systems have gained attention in the verification of this concept. Here we propose an experimental set-up consisting of two adjacent piezoelectric semiconducting layers, one of them carrying dynamic quantum dots (DQDs), and the other being p-doped with an attached gate on top, which introduces a space-dependent layer conductivity. The propagation of surface acoustic waves (SAWs) on the latter layer is governed by a wave equation with an effective metric. In the frame of the DQDs, this space- and time-dependent metric possesses a sonic horizon for SAWs and resembles that of a two dimensional non-rotating and uncharged black hole to some extent. The non-thermal steady state of the DQD spin indicates particle creation in form of piezophonons.
真空涨落转化为实粒子最初是由 L. Parker 考虑到膨胀的宇宙而预测的,随后 S. Hawking 的工作涉及黑洞辐射。由于其实验观测具有挑战性,类似的系统在这一概念的验证中引起了关注。在这里,我们提出了一个实验装置,由两个相邻的压电半导体层组成,其中一个带有动态量子点(DQD),另一个在顶部掺杂有一个附加的门,从而引入了一个空间相关的层电导率。在后一层上表面声波(SAW)的传播由一个具有有效度量的波动方程控制。在 DQD 的框架内,这个时空相关的度量对于 SAW 具有声子视界,并且在某种程度上类似于二维非旋转和不带电的黑洞的度量。DQD 自旋的非热稳态表明以声子的形式产生粒子。