Zhang Tingting, Olsson Emilia, Choolaei Mohammadmehdi, Stolojan Vlad, Feng Chuanqi, Wu Huimin, Wang Shiquan, Cai Qiong
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062, China.
Depatment of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK.
Materials (Basel). 2020 Mar 4;13(5):1132. doi: 10.3390/ma13051132.
High capacity electrode materials are the key for high energy density Li-ion batteries (LIB) to meet the requirement of the increased driving range of electric vehicles. Here we report the synthesis of a novel anode material, BiMoO/palm-carbon composite, via a simple hydrothermal method. The composite shows higher reversible capacity and better cycling performance, compared to pure BiMoO. In 0-3 V, a potential window of 100 mA/g current density, the LIB cells based on BiMoO/palm-carbon composite show retention reversible capacity of 664 mAh·g after 200 cycles. Electrochemical testing and density functional theory calculations are used to study the fundamental mechanism of Li ion incorporation into the materials. These studies confirm that Li ions incorporate into BiMoO via insertion to the interstitial sites in the MoO-layer, and the presence of palm-carbon improves the electronic conductivity, and thus enhanced the performance of the composite materials.
高容量电极材料是高能量密度锂离子电池(LIB)满足电动汽车续航里程增加要求的关键。在此,我们报告了一种新型负极材料BiMoO/棕榈碳复合材料的合成,该材料通过简单的水热法制备。与纯BiMoO相比,该复合材料具有更高的可逆容量和更好的循环性能。在0-3V、100mA/g电流密度的电位窗口下,基于BiMoO/棕榈碳复合材料的LIB电池在200次循环后显示出664mAh·g的可逆容量保持率。采用电化学测试和密度泛函理论计算来研究锂离子嵌入材料的基本机制。这些研究证实,锂离子通过插入MoO层的间隙位置嵌入BiMoO中,棕榈碳的存在提高了电子导电性,从而增强了复合材料的性能。