Gauthier Magali, Carney Thomas J, Grimaud Alexis, Giordano Livia, Pour Nir, Chang Hao-Hsun, Fenning David P, Lux Simon F, Paschos Odysseas, Bauer Christoph, Maglia Filippo, Lupart Saskia, Lamp Peter, Shao-Horn Yang
Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca , Via Roberto Cozzi 55, 20125 Milan, Italy.
BMW Group Technology Office USA , 2606 Bayshore Parkway, Mountain View, California 94043, United States.
J Phys Chem Lett. 2015 Nov 19;6(22):4653-72. doi: 10.1021/acs.jpclett.5b01727. Epub 2015 Nov 11.
Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi2-xMnO3·(1-y)Li1-xMO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties.
了解电极/电解质界面(EEI)处的反应对于制定提高锂电池循环寿命和安全性的策略至关重要。尽管在过去四十年中进行了研究,但对于在EEI处通过何种方式形成不同组分以及它们如何影响EEI层性能的了解仍然有限。我们回顾了用于建立负极(包括锂、石墨、锡和硅)上EEI(通常称为固体电解质界面或SEI)的著名镶嵌结构模型的研究结果。对于正极的EEI层,了解要少得多。高容量富锂层状氧化物yLi2-xMnO3·(1-y)Li1-xMO2可通过氧阴离子氧化还原向电解质生成高活性物种,这突出表明迫切需要了解先进正极与电解质和EEI层的反应。明确界定的电极表面原位表征的最新进展可为定制EEI层组成和性能提供机理见解和策略。