Suppr超能文献

微生物群对黑腹果蝇寿命的遗传影响。

Genetic Influences of the Microbiota on the Life Span of Drosophila melanogaster.

机构信息

Department of Plant & Wildlife Sciences, Brigham Young University, Provo, Utah, USA.

School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA.

出版信息

Appl Environ Microbiol. 2020 May 5;86(10). doi: 10.1128/AEM.00305-20.

Abstract

To better understand how associated microorganisms ("microbiota") influence organismal aging, we focused on the model organism We conducted a metagenome-wide association (MGWA) as a screen to identify bacterial genes associated with variation in the life span. The results of the MGWA predicted that bacterial cysteine and methionine metabolism genes influence fruit fly longevity. A mutant analysis, in which flies were inoculated with strains bearing mutations in various methionine cycle genes, confirmed a role for some methionine cycle genes in extending or shortening fruit fly life span. Initially, we predicted these genes might influence longevity by mimicking or opposing methionine restriction, an established mechanism for life span extension in fruit flies. However, follow-up transcriptome sequencing (RNA-seq) and metabolomic experiments were generally inconsistent with this conclusion and instead implicated glucose and vitamin B metabolism in these influences. We then tested if bacteria could influence life span through methionine restriction using a different set of bacterial strains. Flies reared with a bacterial strain that ectopically expressed bacterial transsulfuration genes and lowered the methionine content of the fly diet also extended female life span. Taken together, the microbial influences shown here overlap with established host genetic mechanisms for aging and therefore suggest overlapping roles for host and microbial metabolism genes in organismal aging. Associated microorganisms ("microbiota") are intimately connected to the behavior and physiology of their animal hosts, and defining the mechanisms of these interactions is an urgent imperative. This study focuses on how microorganisms influence the life span of a model host, the fruit fly First, we performed a screen that suggested a strong influence of bacterial methionine metabolism on host life span. Follow-up analyses of gene expression and metabolite abundance identified stronger roles for vitamin B and glucose than methionine metabolism among the tested mutants, possibly suggesting a more limited role for bacterial methionine metabolism genes in host life span effects. In a parallel set of experiments, we created a distinct bacterial strain that expressed life span-extending methionine metabolism genes and showed that this strain can extend fly life span. Therefore, this work identifies specific bacterial genes that influence host life span, including in ways that are consistent with the expectations of methionine restriction.

摘要

为了更好地了解相关微生物(“微生物组”)如何影响生物体的衰老,我们以模式生物 为研究对象。我们进行了宏基因组关联(MGWA)分析,作为一种筛选方法,以鉴定与寿命变化相关的细菌基因。MGWA 的结果预测,细菌半胱氨酸和蛋氨酸代谢基因影响果蝇的寿命。突变分析证实,一些蛋氨酸循环基因在延长或缩短果蝇寿命方面发挥作用,在该分析中,研究人员用携带各种蛋氨酸循环基因突变的菌株感染果蝇。最初,我们预测这些基因可能通过模拟或拮抗蛋氨酸限制来影响寿命,蛋氨酸限制是延长果蝇寿命的一种既定机制。然而,随后的转录组测序(RNA-seq)和代谢组学实验结果通常与这一结论不一致,反而表明葡萄糖和维生素 B 代谢在这些影响中起作用。然后,我们使用另一组细菌菌株测试了细菌是否可以通过蛋氨酸限制来影响寿命。用一种异位表达细菌转硫基因并降低果蝇饮食中蛋氨酸含量的细菌菌株饲养的果蝇也延长了雌性寿命。总的来说,这里显示的微生物影响与衰老的宿主遗传机制重叠,因此表明宿主和微生物代谢基因在机体衰老中具有重叠作用。相关微生物(“微生物组”)与动物宿主的行为和生理密切相关,定义这些相互作用的机制是当务之急。本研究重点关注微生物如何影响模型宿主果蝇的寿命。首先,我们进行了一项筛选,结果表明细菌蛋氨酸代谢对宿主寿命有很强的影响。对基因表达和代谢物丰度的后续分析表明,在测试的突变体中,维生素 B 和葡萄糖的作用比蛋氨酸代谢更强,这可能表明细菌蛋氨酸代谢基因在宿主寿命效应中的作用更为有限。在一组平行实验中,我们创建了一种表达延长寿命的蛋氨酸代谢基因的独特细菌菌株,并表明该菌株可以延长果蝇的寿命。因此,这项工作确定了影响宿主寿命的特定细菌基因,包括与蛋氨酸限制预期一致的方式。

相似文献

引用本文的文献

2
Amino acid restriction, aging, and longevity: an update.氨基酸限制、衰老与长寿:最新进展
Front Aging. 2024 May 2;5:1393216. doi: 10.3389/fragi.2024.1393216. eCollection 2024.
7
The Role of Microbiota in Aging.微生物群在衰老中的作用。
Front Aging. 2022 May 19;3:909509. doi: 10.3389/fragi.2022.909509. eCollection 2022.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验