Suppr超能文献

三金属Ru@AuPt核壳纳米结构:微观应变对CO吸附及甲酸氧化电催化活性的影响

Trimetallic Ru@AuPt core-shell nanostructures: The effect of microstrain on CO adsorption and electrocatalytic activity of formic acid oxidation.

作者信息

Hu Xiao, Zou Jiasui, Gao Hongcheng, Kang Xiongwu

机构信息

Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, 382 East Waihuan Rd., Guangzhou 510006, China.

Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, 382 East Waihuan Rd., Guangzhou 510006, China.

出版信息

J Colloid Interface Sci. 2020 Jun 15;570:72-79. doi: 10.1016/j.jcis.2020.02.111. Epub 2020 Feb 27.

Abstract

It is desirable to unravel the correlation between the geometric and electronic structures and the activity and further prepare high-performance electrocatalysts. Here in this paper, trimetallic Ru@Au-Pt core-shell nanoparticles were prepared by sequential ethanol reduction method, and further subject to characterization of X-ray diffraction, high angle annular dark field transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical CO stripping. Further analysis based on Williamson-Hall method revealed that the Au/Pt atomic ratio and shell thickness result in apparent variation of micro-strain and CO binding energy of Ru@AuPt nanoparticles, where the CO oxidation peak potential showed an inverted volcano-shape dependence on the microstrain of the metal nanoparticles while the catalytic activity towards electrooxidation of formic acid is linearly dependent on the micro-strain. The best Ru@Au-Pt catalyst delivers a specific activity of 4.14 mA cm, which is 52 times that of Pt/C, respectively. This study indicated that the microstrain and stacking fault of metal nanoparticles might be a good descriptor for the catalytic activity and may shed light the rational design, synthesis and surface engineering towards the high-performance electrocatalyst.

摘要

揭示几何结构与电子结构之间的关联以及活性,并进一步制备高性能电催化剂是很有必要的。本文通过连续乙醇还原法制备了三金属Ru@Au-Pt核壳纳米粒子,并对其进行了X射线衍射、高角度环形暗场透射电子显微镜、X射线光电子能谱和电化学CO脱附表征。基于威廉姆森-霍尔方法的进一步分析表明,Au/Pt原子比和壳层厚度导致Ru@AuPt纳米粒子的微观应变和CO结合能出现明显变化,其中CO氧化峰电位对金属纳米粒子的微观应变呈现倒火山形状的依赖性,而对甲酸电氧化的催化活性则与微观应变呈线性相关。最佳的Ru@Au-Pt催化剂的比活性为4.14 mA cm,分别是Pt/C的52倍。该研究表明,金属纳米粒子的微观应变和堆垛层错可能是催化活性的良好描述符,并可能为高性能电催化剂的合理设计、合成和表面工程提供思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验