Suppr超能文献

俄亥俄州农村地区纳洛酮给药事件的时空分布 2010-16 年。

The spatio-temporal distribution of naloxone administration events in rural Ohio 2010-16.

机构信息

College of Social Work, The Ohio State University, 1947 College Rd. N, Columbus, OH 43210, United States; Division of Social Work, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819-6090, United States.

College of Social Work, The Ohio State University, 340C Stillman Hall, 1947 College Rd. N, Columbus, OH 43210, United States.

出版信息

Drug Alcohol Depend. 2020 Apr 1;209:107950. doi: 10.1016/j.drugalcdep.2020.107950. Epub 2020 Feb 29.

Abstract

INTRODUCTION

In 2017, Ohio had the second highest rate of drug overdose deaths in the United States. Current opioid related epidemiologic literature has begun to uncover the environmental level influences on the opioid epidemic and how the end results may ultimately manifest over space and time. This work is still nascent however, with most clustering research conducted at a spatial unit such as county level, which (1) can obscure differences between urban and rural communities, (2) does not consider dynamics that cross county lines, and (3) is difficult to interpret directly into strategic and localized intervention efforts. We address this gap by describing, at the Census block level, the spatial-temporal clustering of opioid related events in rural Ohio.

METHODS

We use the outcome of the administration of naloxone emergency medical service (EMS) calls in rural Ohio Census blocks during 2010-16 in a Poisson model of spatial scan statistics.

RESULTS

We found that naloxone event clustering in rural Ohio in the recent decade was widely dispersed over time and space, with clusters that average 17 times the risk of having an event compared to areas outside the cluster. Many of the larger spatial clusters crossed administrative boundaries (i.e., county lines) suggesting that opioid misuse may be less responsive to county level policies than to other factors.

DISCUSSION

Timely identification of localized overdose event clustering can guide affected communities toward rapid interventions aimed at minimizing the morbidity and mortality resulting from contagious opioid misuse.

摘要

引言

2017 年,俄亥俄州的药物过量死亡率在美国位居第二。目前,有关阿片类药物的流行病学文献已经开始揭示环境因素对阿片类药物流行的影响,以及最终结果如何在空间和时间上表现出来。然而,这项工作仍处于起步阶段,大多数聚类研究都是在县一级的空间单位进行的,这(1)可能掩盖了城乡社区之间的差异,(2)没有考虑跨越县界的动态变化,(3)难以直接转化为战略和本地化的干预措施。我们通过描述俄亥俄州农村地区阿片类相关事件在人口普查块级别的时空聚类来解决这一差距。

方法

我们在 2010-16 年期间,在俄亥俄州农村地区的人口普查块中使用纳洛酮紧急医疗服务(EMS)呼叫管理的结果,进行泊松模型空间扫描统计分析。

结果

我们发现,近十年来,俄亥俄州农村地区纳洛酮事件的聚类在时间和空间上广泛分散,与集群外地区相比,集群内地区的事件风险平均高出 17 倍。许多较大的空间集群跨越了行政边界(即县界),这表明阿片类药物滥用可能对县一级的政策反应不如其他因素敏感。

讨论

及时识别局部过量事件的聚类可以指导受影响的社区采取快速干预措施,最大限度地减少传染性阿片类药物滥用导致的发病率和死亡率。

相似文献

2
Strategies and policies to address the opioid epidemic: A case study of Ohio.应对阿片类药物流行的策略与政策:以俄亥俄州为例
J Am Pharm Assoc (2003). 2017 Mar-Apr;57(2S):S148-S153. doi: 10.1016/j.japh.2017.01.001. Epub 2017 Feb 8.

本文引用的文献

2
Public restrooms and the opioid epidemic.公共卫生间与阿片类药物流行问题
Subst Abus. 2020;41(4):432-436. doi: 10.1080/08897077.2019.1640834. Epub 2019 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验