Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
Department of Biology, Kwantlen Polytechnic University, 12666 72 Avenue, Surrey, BC, V3W 2M8, Canada.
J Membr Biol. 2020 Apr;253(2):153-166. doi: 10.1007/s00232-020-00111-8. Epub 2020 Mar 7.
Hyperpolarization-activated cation-nonselective (HCN) channels regulate electrical activity in the brain and heart in a cAMP-dependent manner. The voltage-gating of these channels is mediated by a transmembrane (TM) region but is additionally regulated by direct binding of cAMP to a cyclic nucleotide-binding (CNB) fold in the cytoplasmic C-terminal region. Cyclic AMP potentiation has been explained by an autoinhibition model which views the unliganded CNB fold as an inhibitory module whose influence is disrupted by cAMP binding. However, the HCN2 subtype uses two other CNB fold-mediated mechanisms called open-state trapping and Quick-Activation to respectively slow the deactivation kinetics and speed the activation kinetics, against predictions of an autoinhibition model. To test how these multiple mechanisms are influenced by the TM region, we replaced the TM region of HCN2 with that of HCN4. This HCN4 TM-replacement preserved cAMP potentiation but augmented the magnitude of autoinhibition by the unliganded CNB fold; it moreover disrupted open-state trapping and Quick-Activation so that autoinhibition became the dominant mechanism contributed by the C-terminal region to determine kinetics. Truncation within the CNB fold partially relieved this augmented autoinhibition. This argues against the C-terminal region acting like a portable module with consistent effects on TM regions of different subtypes. Our findings provide evidence that functional interactions between the HCN2 TM region and C-terminal region govern multiple CNB fold-mediated mechanisms, implying that the molecular mechanisms of autoinhibition, open-state trapping, and Quick-Activation include participation of TM region structures.
超极化激活阳离子非选择性 (HCN) 通道以 cAMP 依赖性方式调节大脑和心脏的电活动。这些通道的电压门控由跨膜 (TM) 区域介导,但通过 cAMP 与细胞质 C 末端区域中环核苷酸结合 (CNB) 折叠的直接结合进行额外调节。环 AMP 增强作用已通过自动抑制模型得到解释,该模型认为未配体结合的 CNB 折叠作为一个抑制模块,其影响被 cAMP 结合破坏。然而,HCN2 亚型使用另外两种 CNB 折叠介导的机制,称为开放状态捕获和快速激活,分别减慢失活动力学并加速激活动力学,与自动抑制模型的预测相反。为了测试这些多种机制如何受 TM 区域的影响,我们用 HCN4 的 TM 区域替换 HCN2 的 TM 区域。这种 HCN4 TM 替换保留了 cAMP 增强作用,但增加了未配体结合的 CNB 折叠的自动抑制幅度;此外,它破坏了开放状态捕获和快速激活,使得自动抑制成为 C 末端区域决定动力学的主要机制。CNB 折叠内的截断部分缓解了这种增强的自动抑制。这表明 C 末端区域不像是一个具有不同亚型 TM 区域一致影响的可移动模块。我们的研究结果提供了证据,证明 HCN2 TM 区域和 C 末端区域之间的功能相互作用控制多种 CNB 折叠介导的机制,这意味着自动抑制、开放状态捕获和快速激活的分子机制包括 TM 区域结构的参与。