Department of Biology and Consiglio Nazionale delle Ricerche-Istituto di Biofisica, University of Milan, Via Celoria 26, 20133 Milan, Italy.
J Biol Chem. 2011 Dec 30;286(52):44811-20. doi: 10.1074/jbc.M111.297606. Epub 2011 Oct 17.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually activated by hyperpolarization and binding of cAMP to their cyclic nucleotide binding domain (CNBD). HCN isoforms respond differently to cAMP; binding of cAMP shifts activation of HCN2 and HCN4 by 17 mV but shifts that of HCN1 by only 2-4 mV. To explain the peculiarity of HCN1, we solved the crystal structures and performed a biochemical-biophysical characterization of the C-terminal domain (C-linker plus CNBD) of the three isoforms. Our main finding is that tetramerization of the C-terminal domain of HCN1 occurs at basal cAMP concentrations, whereas those of HCN2 and HCN4 require cAMP saturating levels. Therefore, HCN1 responds less markedly than HCN2 and HCN4 to cAMP increase because its CNBD is already partly tetrameric. This is confirmed by voltage clamp experiments showing that the right-shifted position of V(½) in HCN1 is correlated with its propensity to tetramerize in vitro. These data underscore that ligand-induced CNBD tetramerization removes tonic inhibition from the pore of HCN channels.
超极化激活环核苷酸门控 (HCN) 通道通过超极化和 cAMP 与其环核苷酸结合结构域 (CNBD) 的结合而双重激活。HCN 同工型对 cAMP 的反应不同;cAMP 的结合将 HCN2 和 HCN4 的激活移位 17 mV,但仅将 HCN1 的激活移位 2-4 mV。为了解释 HCN1 的特殊性,我们解决了三种同工型的 C 端结构域(C 连接子加 CNBD)的晶体结构,并进行了生化 - 生物物理特性分析。我们的主要发现是,HCN1 的 C 端结构域在基础 cAMP 浓度下发生四聚化,而 HCN2 和 HCN4 的 C 端结构域则需要 cAMP 饱和水平。因此,HCN1 对 cAMP 增加的反应不如 HCN2 和 HCN4 明显,因为其 CNBD 已经部分四聚化。这一点通过电压钳实验得到证实,该实验表明 HCN1 中 V(½) 的右移位置与其在体外四聚化的倾向相关。这些数据强调了配体诱导的 CNBD 四聚化从 HCN 通道的孔中去除了紧张抑制。