Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.
Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, TX, 77807, USA.
Adv Healthc Mater. 2020 Aug;9(15):e1901580. doi: 10.1002/adhm.201901580. Epub 2020 Mar 8.
Additive manufacturing is a promising method for producing customized 3D bioactive constructs for regenerative medicine. Here, 3D printed highly osteogenic scaffolds using nanoengineered ionic-covalent entanglement ink (NICE) for bone tissue engineering are reported. This NICE ink consists of ionic-covalent entanglement reinforced with Laponite, a 2D nanosilicate (nSi) clay, allowing for the printing of anatomic-sized constructs with high accuracy. The 3D printed structure is able to maintain high structural stability in physiological conditions without any significant swelling or deswelling. The presence of nSi imparts osteoinductive characteristics to the NICE scaffolds, which is further augmented by depositing pluripotent stem cell-derived extracellular matrix (ECM) on the scaffolds. This is achieved by stimulating human induced pluripotent stem cell-derived mesenchymal stem cells (iP-hMSCs) with 2-chloro-5-nitrobenzanilide, a PPARγ inhibitor that enhances Wnt pathway, resulting in the deposition of an ECM characterized by high levels of collagens VI and XII found in anabolic bone. The osteoinductive characteristics of these bioconditioned NICE (bNICE) scaffolds is demonstrated through osteogenic differentiation of bone marrow derived human mesenchymal stem cells. A significant increase in the expression of osteogenic gene markers as well as mineralized ECM are observed on bioconditioned NICE (bNICE) scaffolds compared to bare scaffolds (NICE). The bioconditioned 3D printed scaffolds provide a unique strategy to design personalized bone grafts for in situ bone regeneration.
增材制造是一种很有前途的方法,可以用来生产用于再生医学的定制 3D 生物活性构建体。本文报道了一种使用纳米工程离子共价缠结墨水(NICE)制造用于骨组织工程的高度成骨支架的 3D 打印方法。这种 NICE 墨水由离子共价缠结增强的 Laponite(一种二维纳米硅酸盐(nSi)粘土)组成,允许以高精度打印解剖大小的构建体。3D 打印结构能够在生理条件下保持高结构稳定性,而不会发生明显的肿胀或去肿胀。nSi 的存在赋予了 NICE 支架骨诱导特性,而通过在支架上沉积多能干细胞衍生的细胞外基质(ECM)进一步增强了这些特性。这是通过用 2-氯-5-硝基苯甲酰苯胺刺激人诱导多能干细胞衍生的间充质干细胞(iP-hMSCs)来实现的,2-氯-5-硝基苯甲酰苯胺是一种增强 Wnt 途径的过氧化物酶体增殖物激活受体γ抑制剂,导致沉积的 ECM 具有高浓度的在合成骨中发现的胶原蛋白 VI 和 XII。这些经生物条件化的 NICE(bNICE)支架的骨诱导特性通过骨髓来源的人类间充质干细胞的成骨分化得到证明。与裸支架(NICE)相比,在生物条件化的 NICE(bNICE)支架上观察到成骨基因标志物的表达以及矿化 ECM 的显著增加。生物条件化的 3D 打印支架为原位骨再生提供了一种设计个性化骨移植物的独特策略。