文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于先进组织治疗的含纳米材料的多功能甲基丙烯酰化明胶平台。

Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics.

作者信息

Kurian Amal George, Singh Rajendra K, Patel Kapil D, Lee Jung-Hwan, Kim Hae-Won

机构信息

Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.

Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.

出版信息

Bioact Mater. 2021 Jul 6;8:267-295. doi: 10.1016/j.bioactmat.2021.06.027. eCollection 2022 Feb.


DOI:10.1016/j.bioactmat.2021.06.027
PMID:34541401
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8424393/
Abstract

Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.

摘要

聚合物水凝胶作为用于组织修复以及治疗性分子和细胞递送系统的3D支架,是极具吸引力的平台。其中,甲基丙烯酸化明胶(GelMA)已成为一种具有代表性的水凝胶配方,并在各种生物医学应用中得到应用。最近对基于GelMA的水凝胶的研究致力于将它们与生物活性和功能性纳米材料相结合,旨在为GelMA提供增强的物理化学和生物学特性。这种方法的好处有很多:i)增强机械性能;ii)调节粘弹性以实现生物墨水的3D可打印性;iii)赋予电/磁性能以生产用于修复特定组织(如肌肉、神经)的电/磁活性水凝胶;iv)提供刺激响应性以主动递送治疗性分子;v)在组织修复过程中赋予治疗能力(如抗氧化作用)。纳米材料复合的GelMA系统在各种组织(骨骼、皮肤、心脏和神经)中表现出显著增强的非凡性能,而这些性能在GelMA中很少能观察到。在此,我们系统地综述了纳米材料复合GelMA水凝胶的这些最新研究成果,这些水凝胶被认为是用于组织治疗的下一代多功能平台。GelMA中使用的方法也可应用于其他现有的聚合物水凝胶系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/f9e9c7bbfe9d/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/fc516164800a/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/a51507a5c06d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/eab72c244324/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/29ce9e4b0402/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/c841bc3a46c8/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/ee70e5e4d918/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/f88ce434bbb9/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/a17306c3e3fc/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/5be6420889b1/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/17cc539b7139/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/b6a86a5c87ce/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/4da6cb7f833c/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/2ca4f7f8de4f/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/b29d1669fe23/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/0879ffc5d46b/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/79d1b259c342/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/f9e9c7bbfe9d/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/fc516164800a/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/a51507a5c06d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/eab72c244324/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/29ce9e4b0402/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/c841bc3a46c8/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/ee70e5e4d918/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/f88ce434bbb9/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/a17306c3e3fc/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/5be6420889b1/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/17cc539b7139/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/b6a86a5c87ce/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/4da6cb7f833c/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/2ca4f7f8de4f/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/b29d1669fe23/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/0879ffc5d46b/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/79d1b259c342/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8b/8424393/f9e9c7bbfe9d/gr16.jpg

相似文献

[1]
Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics.

Bioact Mater. 2021-7-6

[2]
Nanomaterials-combined methacrylated gelatin hydrogels (GelMA) for cardiac tissue constructs.

J Control Release. 2024-1

[3]
Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel.

ACS Biomater Sci Eng. 2021-6-14

[4]
GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances.

Biomater Res. 2023-9-15

[5]
Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.

Biofabrication. 2021-4-8

[6]
Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering.

J Biomed Mater Res A. 2022-3

[7]
Recent advances in GelMA hydrogel transplantation for musculoskeletal disorders and related disease treatment.

Theranostics. 2023

[8]
Nanomaterials-Incorporated Chemically Modified Gelatin Methacryloyl-Based Biomedical Composites: A Novel Approach for Bone Tissue Engineering.

Pharmaceutics. 2022-11-29

[9]
Glucosamine-grafted methacrylated gelatin hydrogels as potential biomaterials for cartilage repair.

J Biomed Mater Res B Appl Biomater. 2020-4

[10]
Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies.

Acta Biomater. 2015-11-24

引用本文的文献

[1]
Copper Ion and Tannic Acid Polyphenol-Metal Scaffold Loaded with Curcumin Promote Skin Wound Healing.

ACS Omega. 2025-8-15

[2]
Lumbrokinase-loaded GelMA hydrogels with inflammatory regulatory capacity promote vascularized bone regeneration in critical-sized cranial defects.

RSC Adv. 2025-8-13

[3]
Injectable hydrogels based on mussel-inspired nanocomposite microspheres for non-compressible intra-abdominal hemorrhage control.

Theranostics. 2025-7-28

[4]
Peptide-based rigid nanorod-reinforced gelatin methacryloyl hydrogels for osteochondral regeneration and additive manufacturing.

Nat Commun. 2025-8-2

[5]
Advanced Bioactive Polymers and Materials for Nerve Repair: Strategies and Mechanistic Insights.

J Funct Biomater. 2025-7-9

[6]
Gelatin methacryloyl advances in regenerative dentistry: A global bibliometric analysis.

J Clin Exp Dent. 2025-6-1

[7]
Bioinspired nano-micron hydrogel microspheres for periodontitis therapy through synergistic multi-targeted remodeling of microenvironment.

Theranostics. 2025-6-9

[8]
A 3D Composite Model Using Electrospinning Technology to Study Endothelial Damage.

Biomolecules. 2025-6-13

[9]
The influence of hydrogel stiffness on axonal regeneration after spinal cord injury.

PLoS One. 2025-6-25

[10]
Injectable Biopolymer-Based Hydrogels: A Next-Generation Platform for Minimally Invasive Therapeutics.

Gels. 2025-5-23

本文引用的文献

[1]
The protein corona determines the cytotoxicity of nanodiamonds: implications of corona formation and its remodelling on nanodiamond applications in biomedical imaging and drug delivery.

Nanoscale Adv. 2020-8-10

[2]
Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration.

RSC Adv. 2019-6-5

[3]
Silver-Nanoparticle-Entrapped Soft GelMA Gels as Prospective Scaffolds for Wound Healing.

ACS Appl Bio Mater. 2019-5-20

[4]
Label-Free Fluorescent Mesoporous Bioglass for Drug Delivery, Optical Triple-Mode Imaging, and Photothermal/Photodynamic Synergistic Cancer Therapy.

ACS Appl Bio Mater. 2020-4-20

[5]
Hydrogel microparticles for biomedical applications.

Nat Rev Mater. 2020-1

[6]
Advances in Nerve Guidance Conduit-Based Therapeutics for Peripheral Nerve Repair.

ACS Biomater Sci Eng. 2017-7-10

[7]
From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites.

Acta Biomater. 2021-3-1

[8]
Ferritin Nanocage Conjugated Hybrid Hydrogel for Tissue Engineering and Drug Delivery Applications.

ACS Biomater Sci Eng. 2020-1-13

[9]
Nerve guidance conduit promoted peripheral nerve regeneration in rats.

Artif Organs. 2021-6

[10]
Nanoclay Promotes Mouse Cranial Bone Regeneration Mainly through Modulating Drug Binding and Sustained Release.

Appl Mater Today. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索