Suppr超能文献

用于高性能纳米级光源的石墨烯/氧化锌纳米线/p型氮化镓垂直结

Graphene/ZnO Nanowire/p-GaN Vertical Junction for a High-Performance Nanoscale Light Source.

作者信息

Lin Fang, Liao Xin, Liu Chuan-Pu, Zhang Zhen-Sheng, Liu Song, Yu Dapeng, Liao Zhi-Min

机构信息

State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China.

Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.

出版信息

ACS Omega. 2020 Feb 21;5(8):4133-4138. doi: 10.1021/acsomega.9b03858. eCollection 2020 Mar 3.

Abstract

We report on a high-brightness ultraviolet (UV) nanoscale light source. The light emission diodes are constructed with graphene/ZnO nanowire/p-GaN vertical junctions, which exhibit strong UV electroluminescence (EL) emissions centered at a wavelength of 397 nm at one end of the ZnO nanowire. Compared to the horizontal heterojunction, the vertical junction based on the ZnO nanowire increases the interface area of the heterojunction along with a high-quality interface, thus making the device robust under a large excitation current. In this structure, transparent flexible graphene is used as the top electrode, which can effectively improve performance by increasing the carrier injection area. Moreover, by analyzing the relationship between the integrated light intensity and applied bias, a superlinear dependency with a slope of 3.99 is observed, which means high electrical-to-optical conversion efficiency. Three electron-hole irradiation recombination processes are distinguished according to the EL emission spectra.

摘要

我们报道了一种高亮度紫外(UV)纳米级光源。发光二极管由石墨烯/氧化锌纳米线/p型氮化镓垂直结构成,在氧化锌纳米线的一端呈现出以397纳米波长为中心的强烈紫外电致发光(EL)发射。与水平异质结相比,基于氧化锌纳米线的垂直结增加了异质结的界面面积以及高质量的界面,从而使器件在大激发电流下具有鲁棒性。在这种结构中,透明柔性石墨烯用作顶部电极,通过增加载流子注入面积可有效提高性能。此外,通过分析积分光强与施加偏压之间的关系,观察到斜率为3.99的超线性依赖关系,这意味着具有高的电光转换效率。根据EL发射光谱区分出三种电子-空穴辐照复合过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17c0/7057675/7f481b09b9ff/ao9b03858_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验