Suppr超能文献

DSNet:恶劣天气条件下的目标检测联合语义学习。

DSNet: Joint Semantic Learning for Object Detection in Inclement Weather Conditions.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Aug;43(8):2623-2633. doi: 10.1109/TPAMI.2020.2977911. Epub 2021 Jul 1.

Abstract

In the past half of the decade, object detection approaches based on the convolutional neural network have been widely studied and successfully applied in many computer vision applications. However, detecting objects in inclement weather conditions remains a major challenge because of poor visibility. In this article, we address the object detection problem in the presence of fog by introducing a novel dual-subnet network (DSNet) that can be trained end-to-end and jointly learn three tasks: visibility enhancement, object classification, and object localization. DSNet attains complete performance improvement by including two subnetworks: detection subnet and restoration subnet. We employ RetinaNet as a backbone network (also called detection subnet), which is responsible for learning to classify and locate objects. The restoration subnet is designed by sharing feature extraction layers with the detection subnet and adopting a feature recovery (FR) module for visibility enhancement. Experimental results show that our DSNet achieved 50.84 percent mean average precision (mAP) on a synthetic foggy dataset that we composed and 41.91 percent mAP on a public natural foggy dataset (Foggy Driving dataset), outperforming many state-of-the-art object detectors and combination models between dehazing and detection methods while maintaining a high speed.

摘要

在过去的十年中,基于卷积神经网络的目标检测方法得到了广泛的研究,并成功地应用于许多计算机视觉应用中。然而,由于能见度差,在恶劣天气条件下检测目标仍然是一个主要挑战。在本文中,我们通过引入一种新的双子网网络(DSNet)来解决雾天条件下的目标检测问题,该网络可以端到端进行训练,并共同学习三个任务:能见度增强、目标分类和目标定位。DSNet 通过包括两个子网:检测子网和恢复子网,实现了完全的性能提升。我们采用 RetinaNet 作为骨干网络(也称为检测子网),负责学习分类和定位目标。恢复子网通过与检测子网共享特征提取层,并采用特征恢复(FR)模块来增强能见度来设计。实验结果表明,我们的 DSNet 在我们构建的合成雾数据集上实现了 50.84%的平均精度(mAP),在公共自然雾数据集(Foggy Driving 数据集)上实现了 41.91%的 mAP,优于许多最先进的目标检测方法和去雾与检测方法的组合模型,同时保持了较高的速度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验