Suppr超能文献

基于人工智能的中央浆液性脉络膜视网膜病变病灶区关键边界点定位的自动图像处理方法。

An Automatic Image Processing Method Based on Artificial Intelligence for Locating the Key Boundary Points in the Central Serous Chorioretinopathy Lesion Area.

机构信息

College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

出版信息

Comput Intell Neurosci. 2023 Feb 10;2023:1839387. doi: 10.1155/2023/1839387. eCollection 2023.

Abstract

Accurately and rapidly measuring the diameter of central serous chorioretinopathy (CSCR) lesion area is the key to judge the severity of CSCR and evaluate the efficacy of the corresponding treatments. Currently, the manual measurement scheme based on a single or a small number of optical coherence tomography (OCT) B-scan images encounters the dilemma of incredibility. Although manually measuring the diameters of all OCT B-scan images of a single patient can alleviate the previous issue, the situation of inefficiency will thus arise. Additionally, manual operation is subject to subjective factors of ophthalmologists, resulting in unrepeatable measurement results. Therefore, an automatic image processing method (i.e., a joint framework) based on artificial intelligence (AI) is innovatively proposed for locating the key boundary points of CSCR lesion area to assist the diameter measurement. Firstly, the initial location module (ILM) benefiting from multitask learning is properly adjusted and tentatively achieves the preliminary location of key boundary points. Secondly, the location task is formulated as a Markov decision process, aiming at further improving the location accuracy by utilizing the single agent reinforcement learning module (SARLM). Finally, the joint framework based on the ILM and SARLM is skillfully established, in which ILM provides an initial starting point for SARLM to narrow the active region of agent, and SARLM makes up for the defect of low generalization of ILM by virtue of the independent exploration ability of agent. Experiments reveal the AI-based method which joins the multitask learning, and single agent reinforcement learning paradigms enable agents to work in local region, alleviating the time-consuming problem of SARLM, performing location task in a global scope, and improving the location accuracy of ILM, thus reflecting its effectiveness and clinical application value in the task of rapidly and accurately measuring the diameter of CSCR lesions.

摘要

准确、快速地测量中心性浆液性脉络膜视网膜病变(CSCR)病变区域的直径是判断 CSCR 严重程度和评估相应治疗效果的关键。目前,基于单张或少数张光学相干断层扫描(OCT)B 扫描图像的手动测量方案存在不可信的困境。虽然手动测量单个患者所有 OCT B 扫描图像的直径可以缓解之前的问题,但会因此出现效率低下的情况。此外,手动操作会受到眼科医生主观因素的影响,导致测量结果不可重复。因此,创新性地提出了一种基于人工智能(AI)的自动图像处理方法(即联合框架),用于定位 CSCR 病变区域的关键边界点,以辅助直径测量。首先,利用多任务学习的初始定位模块(ILM)进行适当调整,初步实现关键边界点的定位。其次,将定位任务表述为马尔可夫决策过程,旨在利用单代理强化学习模块(SARLM)进一步提高定位精度。最后,巧妙地建立了基于 ILM 和 SARLM 的联合框架,其中 ILM 为 SARLM 提供了一个初始起点,以缩小代理的活动区域,SARLM 利用代理的独立探索能力弥补了 ILM 泛化能力低的缺陷。实验结果表明,基于 AI 的方法结合了多任务学习和单代理强化学习范式,使代理能够在局部区域工作,缓解了 SARLM 的耗时问题,在全局范围内执行定位任务,并提高了 ILM 的定位精度,从而反映了其在快速准确测量 CSCR 病变直径任务中的有效性和临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e657/9937763/a53572c20e70/CIN2023-1839387.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验