Suppr超能文献

DSNet能够实现特征融合和细节恢复,以在雾天条件下进行准确的目标检测。

DSNet enables feature fusion and detail restoration for accurate object detection in foggy conditions.

作者信息

Jing Zhiyong, Chen Zhaobing, Shi Yucheng, Shi Lei, Wei Lin, Gao Yufei

机构信息

School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, 450001, Henan, China.

College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, Henan, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):21584. doi: 10.1038/s41598-025-03902-y.

Abstract

In real-world scenarios, adverse weather conditions can significantly degrade the performance of deep learning-based object detection models. Specifically, fog reduces visibility, complicating feature extraction and leading to detail loss, which impairs object localization and classification. Traditional approaches often apply image dehazing techniques before detection to enhance degraded images; however, these processed images often retain a rough appearance with a loss of detail. To address these challenges, we propose a novel network, DehazeSRNet(DSNet), which is designed to optimize feature transmission and restore lost image details. First, DSNet utilizes the dehaze fusion network (DFN) to learn dehazing features, applying differentiated processing weights to regions with light and dense fog. Second, to enhance feature transmission, DSNet introduces the MistClear Attention (MCA) module, which is based on a re-parameterized channel-shuffle attention mechanism and effectively optimizes feature information transfer and fusion. Finally, to restore image details, we design the hybrid pixel activation transformer (HPAT), which combines channel attention and window-based self-attention mechanisms to activate additional pixel regions. Experimental results on the Foggy Cityscapes, RTTS, DAWN, and rRain datasets demonstrate that DSNet significantly outperforms existing methods in accuracy and achieves exceptional real-time performance, reaching 78.1 frames per second (FPS), highlighting its potential for practical applications in dynamic environments. As a robust detection framework, DSNet offers theoretical insights and practical references for future research on object detection under adverse weather conditions.

摘要

在现实世界场景中,恶劣天气条件会显著降低基于深度学习的目标检测模型的性能。具体而言,雾会降低能见度,使特征提取变得复杂并导致细节丢失,从而损害目标定位和分类。传统方法通常在检测前应用图像去雾技术来增强退化图像;然而,这些处理后的图像往往保留粗糙的外观且细节有所损失。为应对这些挑战,我们提出了一种新颖的网络,即去雾超分辨率网络(DehazeSRNet,DSNet),其旨在优化特征传输并恢复丢失的图像细节。首先,DSNet利用去雾融合网络(DFN)来学习去雾特征,对有轻雾和浓雾的区域应用差异化的处理权重。其次,为增强特征传输,DSNet引入了薄雾清除注意力(MistClear Attention,MCA)模块,该模块基于重新参数化的通道混洗注意力机制,有效优化特征信息的传递和融合。最后,为恢复图像细节,我们设计了混合像素激活变换器(hybrid pixel activation transformer,HPAT),它结合了通道注意力和基于窗口的自注意力机制来激活额外的像素区域。在雾天城市景观(Foggy Cityscapes)、实时交通场景(RTTS)、黎明数据集(DAWN)和降雨数据集(rRain)上的实验结果表明,DSNet在准确率上显著优于现有方法,并实现了卓越的实时性能,达到每秒78.1帧(FPS),突出了其在动态环境中实际应用的潜力。作为一个强大的检测框架,DSNet为未来在恶劣天气条件下的目标检测研究提供了理论见解和实践参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0834/12215831/bb9d674958d7/41598_2025_3902_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验