文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁微粒光谱法检测甲型 H1N1 流感病毒。

Magnetic Particle Spectroscopy for Detection of Influenza A Virus Subtype H1N1.

机构信息

Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.

出版信息

ACS Appl Mater Interfaces. 2020 Mar 25;12(12):13686-13697. doi: 10.1021/acsami.0c00815. Epub 2020 Mar 13.


DOI:10.1021/acsami.0c00815
PMID:32150378
Abstract

Magnetic nanoparticles (MNPs) with proper surface functionalization have been extensively applied as labels for magnetic immunoassays, carriers for controlled drug/gene delivery, tracers and contrasts for magnetic imaging, etc. Here, we introduce a new biosensing scheme based on magnetic particle spectroscopy (MPS) and the self-assembly of MNPs to quantitatively detect H1N1 nucleoprotein molecules. MPS monitors the harmonics of oscillating MNPs as a metric for the freedom of rotational process, thus indicating the bound states of MNPs. These harmonics can be readily collected from nanogram quantities of iron oxide nanoparticles within 10 s. The H1N1 nucleoprotein molecule hosts multiple different epitopes that forms binding sites for many IgG polyclonal antibodies. Anchoring IgG polyclonal antibodies onto MNPs triggers the cross-linking between MNPs and H1N1 nucleoprotein molecules, thereby forming MNP self-assemblies. Using MPS and the self-assembly of MNPs, we were able to detect as low as 44 nM (4.4 pmole) H1N1 nucleoprotein. In addition, the morphologies and the hydrodynamic sizes of the MNP self-assemblies are characterized to verify the MPS results. Different MNP self-assembly models such as classical cluster, open ring tetramer, and chain model as well as multimers (from dimer to pentamer) are proposed in this paper. Herein, we claim the feasibility of using MPS and the self-assembly of MNPs as a new biosensing scheme for detecting ultralow concentrations of target biomolecules, which can be employed as rapid, sensitive, and wash-free magnetic immunoassays.

摘要

磁性纳米粒子 (MNPs) 通过适当的表面功能化,已被广泛应用于作为磁性免疫分析的标记物、控制药物/基因传递的载体、磁成像的示踪剂和对比剂等。在这里,我们介绍了一种基于磁性粒子光谱 (MPS) 和 MNPs 自组装的新型生物传感方案,用于定量检测 H1N1 核蛋白分子。MPS 监测振荡 MNPs 的谐波作为旋转过程自由度的度量,从而指示 MNPs 的结合状态。这些谐波可以在 10 秒内从纳克数量的氧化铁纳米粒子中轻易收集。H1N1 核蛋白分子具有多个不同的表位,这些表位形成了许多 IgG 多克隆抗体的结合位点。将 IgG 多克隆抗体锚定在 MNPs 上会触发 MNPs 与 H1N1 核蛋白分子之间的交联,从而形成 MNPs 自组装体。通过使用 MPS 和 MNPs 的自组装,我们能够检测到低至 44 nM(4.4 pmole)的 H1N1 核蛋白。此外,我们还对 MNPs 自组装体的形貌和流体动力学尺寸进行了表征,以验证 MPS 结果。本文提出了不同的 MNPs 自组装模型,如经典簇、开环四聚体、链式模型以及多聚体(从二聚体到五聚体)。本文提出了使用 MPS 和 MNPs 自组装作为检测超低浓度靶生物分子的新型生物传感方案的可行性,可用于快速、灵敏、免洗的磁性免疫分析。

相似文献

[1]
Magnetic Particle Spectroscopy for Detection of Influenza A Virus Subtype H1N1.

ACS Appl Mater Interfaces. 2020-3-13

[2]
Magnetic Nanoparticle Relaxation Dynamics-Based Magnetic Particle Spectroscopy for Rapid and Wash-Free Molecular Sensing.

ACS Appl Mater Interfaces. 2019-6-19

[3]
Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion.

Biosens Bioelectron. 2013-7-4

[4]
Rapid and specific influenza virus detection by functionalized magnetic nanoparticles and mass spectrometry.

J Nanobiotechnology. 2011-11-16

[5]
Surface modification of gamma-Fe2O3@SiO2 magnetic nanoparticles for the controlled interaction with biomolecules.

J Nanosci Nanotechnol. 2007-12

[6]
A Portable Magnetic Particle Spectrometer for Future Rapid and Wash-Free Bioassays.

ACS Appl Mater Interfaces. 2021-2-24

[7]
Co-crosslinking strategy for dual functionalization of small magnetic nanoparticles with redox probes and biological probes.

Mikrochim Acta. 2024-7-5

[8]
Self-enzyme chemiluminescence immunoassay capable of rapidly diagnosing the infection of influenza A (H1N1) virus.

Talanta. 2018-9-15

[9]
Influence of the physical and chemical properties of magnetic nanoparticles on their performance in a chemiluminescence immunoassay.

Clin Biochem. 2013-12-18

[10]
Magnetic nanoparticles in nanomedicine: a review of recent advances.

Nanotechnology. 2019-9-6

引用本文的文献

[1]
Stimuli-responsive smart materials enabled high-performance biosensors for liquid biopsies.

J Nanobiotechnology. 2025-7-1

[2]
Advanced Detection of Pancreatic Cancer Circulating Tumor Cells Using Biomarkers and Magnetic Particle Spectroscopy.

Nanotheranostics. 2025-6-12

[3]
Functionalized gold nanoflowers on carbon screen-printed electrodes: an electrochemical platform for biosensing hemagglutinin protein of influenza A H1N1 virus.

Beilstein J Nanotechnol. 2025-4-16

[4]
Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization.

Adv Sci (Weinh). 2025-4

[5]
Bulk Magnetic Properties Arise from Micron-Sized Supraparticle Interactions and Can be Modified on the Nanoscale.

Small. 2025-4

[6]
Effects of Salt Concentration on a Magnetic Nanoparticle-Based Aggregation Assay with a Tunable Dynamic Range.

Sensors (Basel). 2024-9-26

[7]
Roadmap on magnetic nanoparticles in nanomedicine.

Nanotechnology. 2024-11-5

[8]
Impact of Particle Size on the Nonlinear Magnetic Response of Iron Oxide Nanoparticles during Frequency Mixing Magnetic Detection.

Sensors (Basel). 2024-6-29

[9]
Stray Magnetic Field Variations and Micromagnetic Simulations: Models for NiFe Disks Used for Microparticle Trapping.

Micromachines (Basel). 2024-4-26

[10]
Key Contributors to Signal Generation in Frequency Mixing Magnetic Detection (FMMD): An In Silico Study.

Sensors (Basel). 2024-3-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索