Suppr超能文献

盐浓度对具有可调动态范围的基于磁性纳米粒子的聚集分析的影响。

Effects of Salt Concentration on a Magnetic Nanoparticle-Based Aggregation Assay with a Tunable Dynamic Range.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.

Lodestone Biomedical LLC, Lebanon, NH 03766, USA.

出版信息

Sensors (Basel). 2024 Sep 26;24(19):6241. doi: 10.3390/s24196241.

Abstract

Magnetic nanoparticles (MNPs) can be functionalized with antibodies to give them an affinity for a biomarker of interest. Functionalized MNPs (fMNPs) cluster in the presence of a multivalent target, causing a change in their magnetization. Target concentration can be proportional to the 3rd harmonic phase of the fMNP magnetization signal. fMNP clustering can also be induced with salt. Generally, salt can alter the stability of charge stabilized fMNPs causing a change in magnetization that is not proportional to the target concentration. We have developed a model system consisting of biotinylated MNPs (biotin-MNPs) that target streptavidin to study the effects of salt concentration on fMNP-based biosensing in simulated in vivo conditions. We have found that biotin-MNP streptavidin targeting was independent of salt concentration for 0.005x to 1.00x phosphate buffered saline (PBS) solutions. Additionally, we show that our biosensor's measurable concentration range (dynamic range) can be tuned with biotin density. Our results can be leveraged to design an in vivo nanoparticle (NP)-based biosensor with enhanced efficacy in the event of varying salt concentrations.

摘要

磁性纳米粒子(MNPs)可以通过抗体功能化,赋予它们对感兴趣的生物标志物的亲和力。功能化的 MNPs(fMNPs)在多价靶标的存在下聚集,导致其磁化发生变化。靶标浓度与 fMNP 磁化信号的三阶相位成正比。fMNP 聚集也可以用盐诱导。一般来说,盐可以改变电荷稳定的 fMNPs 的稳定性,导致磁化的变化与靶标浓度不成正比。我们开发了一个由生物素化 MNPs(biotin-MNPs)组成的模型系统,该系统靶向链霉亲和素,以研究盐浓度对模拟体内条件下基于 fMNP 的生物传感的影响。我们发现,生物素-MNP 与链霉亲和素的靶向作用与 0.005x 至 1.00x 磷酸盐缓冲盐水(PBS)溶液中的盐浓度无关。此外,我们还表明,我们的生物传感器的可测量浓度范围(动态范围)可以通过生物素密度进行调整。我们的结果可用于设计一种基于体内纳米粒子(NP)的生物传感器,以提高在盐浓度变化时的功效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/805c/11478407/92a950a0f140/sensors-24-06241-g001.jpg

相似文献

2
Assay of miRNA in cell samples using enhanced resonance light scattering technique based on self aggregation of magnetic nanoparticles.
Nanomedicine (Lond). 2018 Sep;13(18):2301-2310. doi: 10.2217/nnm-2018-0066. Epub 2018 Oct 4.
3
A reusable aptasensor of thrombin based on DNA machine employing resonance light scattering technique.
Biosens Bioelectron. 2017 Jun 15;92:259-265. doi: 10.1016/j.bios.2017.02.024. Epub 2017 Feb 20.
4
Magnetic Nanoparticle Relaxation Dynamics-Based Magnetic Particle Spectroscopy for Rapid and Wash-Free Molecular Sensing.
ACS Appl Mater Interfaces. 2019 Jul 3;11(26):22979-22986. doi: 10.1021/acsami.9b05233. Epub 2019 Jun 19.
5
Denaturation strategies for detection of double stranded PCR products on GMR magnetic biosensor array.
Biosens Bioelectron. 2017 Jul 15;93:155-160. doi: 10.1016/j.bios.2016.09.031. Epub 2016 Sep 12.
6
Shape anisotropy enhanced optomagnetic measurement for prostate-specific antigen detection via magnetic chain formation.
Biosens Bioelectron. 2017 Dec 15;98:285-291. doi: 10.1016/j.bios.2017.06.062. Epub 2017 Jun 30.
7
Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion.
Biosens Bioelectron. 2013 Dec 15;50:441-6. doi: 10.1016/j.bios.2013.06.049. Epub 2013 Jul 4.
10
Suspended nanoparticle crystal (S-NPC): A nanofluidics-based, electrical read-out biosensor.
Lab Chip. 2010 Sep 21;10(18):2338-40. doi: 10.1039/c004758a. Epub 2010 Jun 14.

本文引用的文献

2
Magnetic Particle Spectroscopy for Point-of-Care: A Review on Recent Advances.
Sensors (Basel). 2023 Apr 30;23(9):4411. doi: 10.3390/s23094411.
5
Investigation of Commercial Iron Oxide Nanoparticles: Structural and Magnetic Property Characterization.
ACS Omega. 2021 Feb 26;6(9):6274-6283. doi: 10.1021/acsomega.0c05845. eCollection 2021 Mar 9.
6
Toward Rapid and Sensitive Detection of SARS-CoV-2 with Functionalized Magnetic Nanoparticles.
ACS Sens. 2021 Mar 26;6(3):976-984. doi: 10.1021/acssensors.0c02160. Epub 2021 Jan 26.
7
Magnetic Particle Spectroscopy for Detection of Influenza A Virus Subtype H1N1.
ACS Appl Mater Interfaces. 2020 Mar 25;12(12):13686-13697. doi: 10.1021/acsami.0c00815. Epub 2020 Mar 13.
8
Highly Stable Colorimetric Sensing by Assembly of Gold Nanoparticles with SYBR Green I: From Charge Screening to Charge Neutralization.
Anal Chem. 2020 Jan 7;92(1):1455-1462. doi: 10.1021/acs.analchem.9b04660. Epub 2019 Dec 23.
9
Ligand density on nanoparticles: A parameter with critical impact on nanomedicine.
Adv Drug Deliv Rev. 2019 Mar 15;143:22-36. doi: 10.1016/j.addr.2019.05.010. Epub 2019 May 31.
10
The effect of salts in aqueous media on the formation of the BSA corona on SiO nanoparticles.
Colloids Surf B Biointerfaces. 2019 Jul 1;179:374-381. doi: 10.1016/j.colsurfb.2019.04.012. Epub 2019 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验