Suppr超能文献

基于套索的并行回火在系统生物学中的模型简化。

Parallel Tempering with Lasso for model reduction in systems biology.

机构信息

Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS Comput Biol. 2020 Mar 9;16(3):e1007669. doi: 10.1371/journal.pcbi.1007669. eCollection 2020 Mar.

Abstract

Systems Biology models reveal relationships between signaling inputs and observable molecular or cellular behaviors. The complexity of these models, however, often obscures key elements that regulate emergent properties. We use a Bayesian model reduction approach that combines Parallel Tempering with Lasso regularization to identify minimal subsets of reactions in a signaling network that are sufficient to reproduce experimentally observed data. The Bayesian approach finds distinct reduced models that fit data equivalently. A variant of this approach that uses Lasso to perform selection at the level of reaction modules is applied to the NF-κB signaling network to test the necessity of feedback loops for responses to pulsatile and continuous pathway stimulation. Taken together, our results demonstrate that Bayesian parameter estimation combined with regularization can isolate and reveal core motifs sufficient to explain data from complex signaling systems.

摘要

系统生物学模型揭示了信号输入与可观察的分子或细胞行为之间的关系。然而,这些模型的复杂性常常掩盖了调节涌现性质的关键因素。我们使用一种贝叶斯模型约简方法,该方法结合并行温度和套索正则化来识别信号网络中足以再现实验观察到的数据的最小反应子集。贝叶斯方法找到等效拟合数据的不同简化模型。这种方法的一个变体,使用套索在反应模块级别进行选择,应用于 NF-κB 信号网络,以测试反馈回路对脉动和连续通路刺激反应的必要性。总的来说,我们的结果表明,贝叶斯参数估计与正则化相结合可以分离和揭示足以解释复杂信号系统数据的核心基序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ee/7082068/3dcd429c658b/pcbi.1007669.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验