Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.
PLoS Comput Biol. 2020 Mar 9;16(3):e1007669. doi: 10.1371/journal.pcbi.1007669. eCollection 2020 Mar.
Systems Biology models reveal relationships between signaling inputs and observable molecular or cellular behaviors. The complexity of these models, however, often obscures key elements that regulate emergent properties. We use a Bayesian model reduction approach that combines Parallel Tempering with Lasso regularization to identify minimal subsets of reactions in a signaling network that are sufficient to reproduce experimentally observed data. The Bayesian approach finds distinct reduced models that fit data equivalently. A variant of this approach that uses Lasso to perform selection at the level of reaction modules is applied to the NF-κB signaling network to test the necessity of feedback loops for responses to pulsatile and continuous pathway stimulation. Taken together, our results demonstrate that Bayesian parameter estimation combined with regularization can isolate and reveal core motifs sufficient to explain data from complex signaling systems.
系统生物学模型揭示了信号输入与可观察的分子或细胞行为之间的关系。然而,这些模型的复杂性常常掩盖了调节涌现性质的关键因素。我们使用一种贝叶斯模型约简方法,该方法结合并行温度和套索正则化来识别信号网络中足以再现实验观察到的数据的最小反应子集。贝叶斯方法找到等效拟合数据的不同简化模型。这种方法的一个变体,使用套索在反应模块级别进行选择,应用于 NF-κB 信号网络,以测试反馈回路对脉动和连续通路刺激反应的必要性。总的来说,我们的结果表明,贝叶斯参数估计与正则化相结合可以分离和揭示足以解释复杂信号系统数据的核心基序。