Suppr超能文献

将模型推向极限:基于轮廓似然的模型简化

Driving the Model to Its Limit: Profile Likelihood Based Model Reduction.

作者信息

Maiwald Tim, Hass Helge, Steiert Bernhard, Vanlier Joep, Engesser Raphael, Raue Andreas, Kipkeew Friederike, Bock Hans H, Kaschek Daniel, Kreutz Clemens, Timmer Jens

机构信息

Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany.

Merrimack Pharmaceuticals, Boston, MA, United States of America.

出版信息

PLoS One. 2016 Sep 2;11(9):e0162366. doi: 10.1371/journal.pone.0162366. eCollection 2016.

Abstract

In systems biology, one of the major tasks is to tailor model complexity to information content of the data. A useful model should describe the data and produce well-determined parameter estimates and predictions. Too small of a model will not be able to describe the data whereas a model which is too large tends to overfit measurement errors and does not provide precise predictions. Typically, the model is modified and tuned to fit the data, which often results in an oversized model. To restore the balance between model complexity and available measurements, either new data has to be gathered or the model has to be reduced. In this manuscript, we present a data-based method for reducing non-linear models. The profile likelihood is utilised to assess parameter identifiability and designate likely candidates for reduction. Parameter dependencies are analysed along profiles, providing context-dependent suggestions for the type of reduction. We discriminate four distinct scenarios, each associated with a specific model reduction strategy. Iterating the presented procedure eventually results in an identifiable model, which is capable of generating precise and testable predictions. Source code for all toy examples is provided within the freely available, open-source modelling environment Data2Dynamics based on MATLAB available at http://www.data2dynamics.org/, as well as the R packages dMod/cOde available at https://github.com/dkaschek/. Moreover, the concept is generally applicable and can readily be used with any software capable of calculating the profile likelihood.

摘要

在系统生物学中,一项主要任务是使模型复杂度与数据的信息内容相匹配。一个有用的模型应该能够描述数据,并产生确定良好的参数估计值和预测结果。模型过小将无法描述数据,而模型过大则往往会过度拟合测量误差,无法提供精确的预测。通常情况下,会对模型进行修改和调整以拟合数据,这往往会导致模型过大。为了恢复模型复杂度与可用测量值之间的平衡,要么收集新数据,要么简化模型。在本手稿中,我们提出了一种基于数据的非线性模型简化方法。利用轮廓似然性来评估参数可识别性,并指定可能的简化候选对象。沿着轮廓分析参数依赖性,为简化类型提供上下文相关的建议。我们区分了四种不同的情况,每种情况都与一种特定的模型简化策略相关联。反复执行所提出的过程最终会得到一个可识别的模型,该模型能够生成精确且可检验的预测。所有示例的源代码在基于MATLAB的免费开源建模环境Data2Dynamics(网址为http://www.data2dynamics.org/)中提供,以及在https://github.com/dkaschek/上可用的R包dMod/cOde中提供。此外,该概念具有普遍适用性,并且可以很容易地与任何能够计算轮廓似然性的软件一起使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d30/5010240/5554742a6477/pone.0162366.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验