Department of Geography, State University of New York, Buffalo, New York 14260.
Department of Botany, University of Wyoming, Laramie, Wyoming 82071
Plant Physiol. 2020 Jun;183(2):602-619. doi: 10.1104/pp.19.00375. Epub 2020 Mar 9.
Crop improvement is crucial to ensuring global food security under climate change, and hence there is a pressing need for phenotypic observations that are both high throughput and improve mechanistic understanding of plant responses to environmental cues and limitations. In this study, chlorophyll fluorescence light response curves and gas-exchange observations are combined to test the photosynthetic response to moderate drought in four genotypes of The quantum yield of PSII ( ) is here analyzed as an exponential decline under changing light intensity and soil moisture. Both the maximum and the rate of decline across a large range of light intensities (0-1,000 μmol photons m s; ) are negatively affected by drought. We introduce an alternative photosynthesis model ( model) incorporating parameters from rapid fluorescence response curves. Specifically, the model uses as an input for estimating the photosynthetic electron transport rate, which agrees well with two existing photosynthesis models (Farquhar-von Caemmerer-Berry and Yin). The model represents a major improvement in photosynthesis modeling through the integration of high-throughput fluorescence phenotyping data, resulting in gained parameters of high mechanistic value.
在气候变化下,作物改良对于确保全球粮食安全至关重要,因此迫切需要能够进行高通量表型观察的方法,以提高我们对植物响应环境线索和限制的机制的理解。在这项研究中,我们将叶绿素荧光光响应曲线和气体交换观测结合起来,以测试四个基因型对中度干旱的光合响应。这里分析了 PSII 的量子产率( )作为光强度和土壤湿度变化下的指数下降。最大 和在很大的光强度范围内(0-1000 μmol 光子 m s ; )的 下降速率都受到干旱的负面影响。我们引入了一种替代光合作用模型( 模型),该模型结合了快速荧光响应曲线的参数。具体来说,该模型使用 作为输入,用于估计光合电子传递速率,该模型与两个现有的光合作用模型(Farquhar-von Caemmerer-Berry 和 Yin)吻合较好。 模型通过整合高通量荧光表型数据,在光合作用建模方面取得了重大进展,得到了具有高机械价值的参数。