Geography Department, University at Buffalo, Buffalo, NY, USA.
Botany Department, University of Wyoming, Laramie, WY, USA.
J Exp Bot. 2019 Apr 29;70(9):2561-2574. doi: 10.1093/jxb/erz090.
Dynamic process-based plant models capture complex physiological response across time, carrying the potential to extend simulations out to novel environments and lend mechanistic insight to observed phenotypes. Despite the translational opportunities for varietal crop improvement that could be unlocked by linking natural genetic variation to first principles-based modeling, these models are challenging to apply to large populations of related individuals. Here we use a combination of model development, experimental evaluation, and genomic prediction in Brassica rapa L. to set the stage for future large-scale process-based modeling of intraspecific variation. We develop a new canopy growth submodel for B. rapa within the process-based model Terrestrial Regional Ecosystem Exchange Simulator (TREES), test input parameters for feasibility of direct estimation with observed phenotypes across cultivated morphotypes and indirect estimation using genomic prediction on a recombinant inbred line population, and explore model performance on an in silico population under non-stressed and mild water-stressed conditions. We find evidence that the updated whole-plant model has the capacity to distill genotype by environment interaction (G×E) into tractable components. The framework presented offers a means to link genetic variation with environment-modulated plant response and serves as a stepping stone towards large-scale prediction of unphenotyped, genetically related individuals under untested environmental scenarios.
动态基于过程的植物模型可以捕捉随时间变化的复杂生理反应,具有将模拟扩展到新环境的潜力,并为观察到的表型提供机械洞察力。尽管通过将自然遗传变异与基于第一原理的建模联系起来,可以为品种作物改良带来潜在的转化机会,但这些模型在应用于相关个体的大群体时具有挑战性。在这里,我们使用拟南芥中的模型开发、实验评估和基因组预测的组合,为未来基于过程的种内变异的大规模建模奠定基础。我们在基于过程的模型 Terrestrial Regional Ecosystem Exchange Simulator(TREES)中为芸薹属植物开发了一个新的冠层生长子模型,测试了输入参数在直接使用表型在不同栽培形态中进行直接估计和使用重组自交系群体进行基因组预测进行间接估计的可行性,并在非胁迫和轻度水分胁迫条件下的虚拟群体中探索模型性能。我们有证据表明,经过更新的整个植物模型有能力将基因型与环境互作(G×E)简化为可处理的成分。所提出的框架提供了一种将遗传变异与环境调节的植物反应联系起来的方法,并为在未经测试的环境情景下对未表型、遗传相关个体进行大规模预测提供了一个垫脚石。