Suppr超能文献

原发性近端肾小管重吸收增加和肾小管转运代偿调节受损决定糖尿病中的肾小球高滤过:一项建模分析。

Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis.

作者信息

Hallow K Melissa, Gebremichael Yeshitila, Helmlinger Gabriel, Vallon Volker

机构信息

College of Engineering and College of Public Health, Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia;

College of Engineering and College of Public Health, Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia.

出版信息

Am J Physiol Renal Physiol. 2017 May 1;312(5):F819-F835. doi: 10.1152/ajprenal.00497.2016. Epub 2017 Feb 1.

Abstract

Glomerular hypertension and hyperfiltration in early diabetes are associated with development and progression of diabetic kidney disease. The tubular hypothesis of diabetic hyperfiltration proposes that it is initiated by a primary increase in sodium (Na) reabsorption in the proximal tubule (PT) and the resulting tubuloglomerular feedback (TGF) response and lowering of Bowman space pressure (P). Here we utilized a mathematical model of the human kidney to investigate over acute and chronic timescales the mechanisms responsible for the magnitude of the hyperfiltration response. The model implicates that the primary hyperreabsorption of Na in the PT produces a Na imbalance that is only partially restored by the hyperfiltration induced by TGF and changes in P Thus secondary adaptations are needed to restore Na balance. This may include neurohumoral transport regulation and/or pressure-natriuresis (i.e., the decrease in Na reabsorption in response to increased renal perfusion pressure). We explored the role of each tubular segment in contributing to this compensation and the consequences of impairment in tubular compensation. The simulations indicate that impaired secondary downregulation of transport potentiated the rise in glomerular hypertension and hyperfiltration needed to restore Na balance at a given level of primary PT hyperreabsorption. Therefore, we propose for the first time that both the extent of primary PT hyperreabsorption and the degree of impairment of the distal tubular responsiveness to regulatory signals determine the level of glomerular hypertension and hyperfiltration in the diabetic kidney, thereby extending the tubule-centric concept of diabetic hyperfiltration and potential therapeutic approaches beyond the proximal tubule.

摘要

糖尿病早期的肾小球高血压和高滤过与糖尿病肾病的发生和发展相关。糖尿病高滤过的肾小管假说提出,它是由近端小管(PT)中钠(Na)重吸收的原发性增加以及由此产生的管球反馈(TGF)反应和鲍曼囊内压(P)降低所引发的。在此,我们利用人体肾脏的数学模型,在急性和慢性时间尺度上研究导致高滤过反应幅度的机制。该模型表明,PT中Na的原发性重吸收增加会产生Na失衡,而TGF诱导的高滤过和P的变化只能部分恢复这种失衡。因此,需要二级适应性变化来恢复Na平衡。这可能包括神经体液转运调节和/或压力性利钠作用(即肾灌注压升高时Na重吸收减少)。我们探讨了每个肾小管节段在这种代偿中的作用以及肾小管代偿受损的后果。模拟结果表明,在给定的PT原发性重吸收水平下,转运的二级下调受损会增强恢复Na平衡所需的肾小球高血压和高滤过的升高。因此,我们首次提出,PT原发性重吸收的程度和远端肾小管对调节信号反应性受损的程度决定了糖尿病肾脏中肾小球高血压和高滤过的水平,从而将以肾小管为中心的糖尿病高滤过概念和潜在治疗方法扩展到近端小管之外。

相似文献

1
2
The tubular hypothesis of nephron filtration and diabetic kidney disease.
Nat Rev Nephrol. 2020 Jun;16(6):317-336. doi: 10.1038/s41581-020-0256-y. Epub 2020 Mar 9.
3
Tubular reabsorption and diabetes-induced glomerular hyperfiltration.
Acta Physiol (Oxf). 2010 Sep;200(1):3-10. doi: 10.1111/j.1748-1716.2010.02147.x. Epub 2010 May 27.
4
Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.
Am J Kidney Dis. 2014 Jul;64(1):16-24. doi: 10.1053/j.ajkd.2014.02.010. Epub 2014 Mar 25.
5
Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption.
J Am Soc Nephrol. 1999 Dec;10(12):2569-76. doi: 10.1681/ASN.V10122569.
7
Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats.
Am J Physiol Renal Physiol. 2021 May 1;320(5):F761-F771. doi: 10.1152/ajprenal.00552.2020. Epub 2021 Mar 1.
8
Glomerular and tubular function in the diabetic kidney.
Adv Chronic Kidney Dis. 2014 May;21(3):297-303. doi: 10.1053/j.ackd.2014.03.006.
9
Glomerular filtration rate in early diabetes: ongoing discussions of causes and mechanisms.
J Nephrol. 2011 Sep-Oct;24(5):537-40. doi: 10.5301/jn.5000009.

引用本文的文献

1
Sodium-Glucose Cotransporter 2 Inhibitors in Diabetic Kidney Disease and beyond.
Glomerular Dis. 2025 Jan 23;5(1):119-132. doi: 10.1159/000543685. eCollection 2025 Jan-Dec.
3
Association between Polycystic Ovarian Syndrome, Impaired Kidney Function and Hyperuricaemia: A Systematic Review and Meta-analysis.
J Hum Reprod Sci. 2024 Apr-Jun;17(2):68-80. doi: 10.4103/jhrs.jhrs_31_24. Epub 2024 May 28.
5
as a novel mark for labeling the proximal convoluted tubule within the zebrafish kidney.
Heliyon. 2024 Mar 7;10(6):e27582. doi: 10.1016/j.heliyon.2024.e27582. eCollection 2024 Mar 30.
6
SGLT2 inhibitors: from glucose-lowering to cardiovascular benefits.
Cardiovasc Res. 2024 Apr 30;120(5):443-460. doi: 10.1093/cvr/cvae047.
7
Childhood Obesity: Insight into Kidney Involvement.
Int J Mol Sci. 2023 Dec 12;24(24):17400. doi: 10.3390/ijms242417400.
9
Understanding heterogeneous mechanisms of heart failure with preserved ejection fraction through cardiorenal mathematical modeling.
PLoS Comput Biol. 2023 Nov 13;19(11):e1011598. doi: 10.1371/journal.pcbi.1011598. eCollection 2023 Nov.
10
Cellular crosstalk of mesangial cells and tubular epithelial cells in diabetic kidney disease.
Cell Commun Signal. 2023 Oct 16;21(1):288. doi: 10.1186/s12964-023-01323-w.

本文引用的文献

1
Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes.
N Engl J Med. 2016 Jul 28;375(4):323-34. doi: 10.1056/NEJMoa1515920. Epub 2016 Jun 14.
2
A Tutorial on RxODE: Simulating Differential Equation Pharmacometric Models in R.
CPT Pharmacometrics Syst Pharmacol. 2016 Jan;5(1):3-10. doi: 10.1002/psp4.12052. Epub 2015 Dec 19.
3
Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron.
Am J Physiol Renal Physiol. 2016 Jun 1;310(11):F1269-83. doi: 10.1152/ajprenal.00543.2015. Epub 2016 Jan 13.
4
Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes.
N Engl J Med. 2015 Nov 26;373(22):2117-28. doi: 10.1056/NEJMoa1504720. Epub 2015 Sep 17.
5
Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition.
Am J Physiol Renal Physiol. 2015 Jun 15;308(12):F1343-57. doi: 10.1152/ajprenal.00007.2015. Epub 2015 Apr 8.
6
A mathematical model of the rat nephron: glucose transport.
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1098-118. doi: 10.1152/ajprenal.00505.2014. Epub 2015 Feb 18.
7
A mathematical model of rat proximal tubule and loop of Henle.
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1076-97. doi: 10.1152/ajprenal.00504.2014. Epub 2015 Feb 18.
8
Renal mechanisms of salt-sensitive hypertension: contribution of two steroid receptor-associated pathways.
Am J Physiol Renal Physiol. 2015 Mar 1;308(5):F377-87. doi: 10.1152/ajprenal.00477.2013. Epub 2014 Dec 17.
9
Integrated control of Na transport along the nephron.
Clin J Am Soc Nephrol. 2015 Apr 7;10(4):676-87. doi: 10.2215/CJN.12391213. Epub 2014 Aug 6.
10
Dominant factors that govern pressure natriuresis in diuresis and antidiuresis: a mathematical model.
Am J Physiol Renal Physiol. 2014 May 1;306(9):F952-69. doi: 10.1152/ajprenal.00500.2013. Epub 2014 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验