Danchin Antoine, Sekowska Agnieszka, You Conghui
AMAbiotics SAS, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France.
School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, S.A.R. Hong Kong, China.
Microb Biotechnol. 2020 Jul;13(4):899-925. doi: 10.1111/1751-7915.13550. Epub 2020 Mar 9.
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron-sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.
翻译过程是生命的核心,通过大量的大分子修饰和特定效应物与一碳(1-C)代谢紧密相连。我们利用手动基因组注释并综合各种实验研究,在此探究这种关键相互作用的可能原因,这种相互作用可能起源于最早细胞诞生的最初阶段。甲硫氨酸、S-腺苷甲硫氨酸和四氢叶酸在这种相互作用中占主导地位。然而,1-C代谢不太可能是原始条件下简单的固化偶然现象。活性一碳物种(ROCS)由翻译机制以与铁硫簇代谢、锌和钾的可用性紧密相关的方式进行缓冲,可能将碳代谢与氮代谢耦合起来。在此过程中,tRNA分子高度修饰的第34位起着关键作用。总体而言,这种代谢整合既可以作为在各种生长转变或环境失衡条件下防止过量碳有害形成的一种保护机制,又可以作为锌稳态的调节剂,同时调节辅基向新生蛋白质的输入。在代谢工程中应考虑到这一知识。