Lee Gyeongho, Kim Yeo Eun, Kim Hyeonjung, Lee Han-Koo, Park Jae Yeon, Oh Seyong, Yoo Hocheon
Semiconductor Total Solution Center, Korea Institute of Ceramic Engineering and Technology, 3321 Gyeongchung-daero, Icheon, 17303, Republic of Korea.
Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seoul, 02841, Republic of Korea.
Small. 2025 Jun;21(25):e2501997. doi: 10.1002/smll.202501997. Epub 2025 May 7.
This study introduces a photonic stimulation-based synaptic transistor utilizing oblique angle deposition (OAD) of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). While OAD enables advanced nanostructures, its application to organic materials remains largely unexplored. Here, the electrical characteristics and photoinduced trap behavior of obliquely deposited DNTT transistors are systematically investigated, successfully replicating key synaptic functions. OAD-controlled grain size and spacing in the DNTT channel yield distinct performance metrics compared to conventional devices. The introduced trap regions enable stable synaptic behavior across diverse gate voltage (V) conditions. By adjusting presynaptic photonic pulse intensity, duration, and repetition, a robust transition is achieved to long-term memory (LTM). The device further demonstrates reliable optoelectronic synaptic operation over 52 durability cycles. Concurrent photonic stimulation enables parallel potentiation-depression dynamics, enhancing processing speed and performance, highlighting its promise for next-generation neuromorphic computing. Its application is also showed in printed circuit board (PCB) defect inspection, successfully mimicking biological synapses under simultaneous photonic stimulation.
本研究介绍了一种基于光子刺激的突触晶体管,该晶体管利用二萘并[2,3-b:2',3'-f]噻吩并[3,2-b]噻吩(DNTT)的倾斜角沉积(OAD)技术。虽然OAD能够实现先进的纳米结构,但其在有机材料中的应用在很大程度上仍未得到探索。在此,对倾斜沉积的DNTT晶体管的电学特性和光致陷阱行为进行了系统研究,成功复制了关键的突触功能。与传统器件相比,DNTT沟道中由OAD控制的晶粒尺寸和间距产生了不同的性能指标。引入的陷阱区域在不同的栅极电压(V)条件下实现了稳定的突触行为。通过调整突触前光子脉冲强度、持续时间和重复次数,实现了向长期记忆(LTM)的稳健转变。该器件在52个耐久性周期内进一步展示了可靠的光电突触操作。同时进行的光子刺激实现了并行的增强-抑制动力学,提高了处理速度和性能,突出了其在下一代神经形态计算中的前景。其应用还体现在印刷电路板(PCB)缺陷检测中,在同时进行光子刺激的情况下成功模拟了生物突触。