Korea Institute of Science and Technology (KIST) 5, 14-gil, Hwarang-ro, Seongbuk-gu, Seoul 02792, South Korea.
School of Electrical Engineering, Korea University 1, Jongam-ro, Seongbuk-gu, Seoul 02841, South Korea.
ACS Appl Mater Interfaces. 2022 Jun 1;14(21):24592-24601. doi: 10.1021/acsami.2c04404. Epub 2022 May 17.
A charge trap device based on field-effect transistors (FET) is a promising candidate for artificial synapses because of its high reliability and mature fabrication technology. However, conventional MOSFET-based charge trap synapses require a strong stimulus for synaptic update because of their inefficient hot-carrier injection into the charge trapping layer, consequently causing a slow speed operation and large power consumption. Here, we propose a highly efficient charge trap synapse using III-V materials-based tunnel field-effect transistor (TFET). Our synaptic TFETs present superior subthreshold swing and improved charge trapping ability utilizing both carriers as charge trapping sources: hot holes created by impact ionization in the narrow bandgap InGaAs after being provided from the p-source, and band-to-band tunneling hot electrons (BBHEs) generated at the abrupt pn junctions in the TFETs. Thanks to these advances, our devices achieved outstanding efficiency in synaptic characteristics with a 5750 times faster synaptic update speed and 51 times lower sub-fJ/um energy consumption per single synaptic update in comparison to the MOSFET-based synapse. An artificial neural network (ANN) simulation also confirmed a high recognition accuracy of handwritten digits up to ∼90% in a multilayer perceptron neural network based on our synaptic devices.
基于场效应晶体管 (FET) 的电荷俘获器件因其高可靠性和成熟的制造技术,是人工突触的有前途的候选者。然而,由于传统的基于 MOSFET 的电荷俘获突触中热载流子向电荷俘获层的注入效率低下,需要强刺激来进行突触更新,因此导致操作速度慢、功耗大。在这里,我们提出了一种使用基于 III-V 材料的隧道场效应晶体管 (TFET) 的高效电荷俘获突触。我们的突触 TFET 利用两种载流子作为电荷俘获源,表现出优异的亚阈值摆幅和改进的电荷俘获能力:窄带隙 InGaAs 中的碰撞电离产生的热空穴(在从 p 源提供之后),以及 TFET 中的突变异质结处产生的带间隧穿热电子 (BBHEs)。由于这些进展,我们的器件在突触特性方面具有出色的效率,与基于 MOSFET 的突触相比,突触更新速度快 5750 倍,每个单突触更新的亚阈值翻转能量消耗低 51 倍。人工神经网络 (ANN) 模拟也证实了基于我们的突触器件的多层感知器神经网络对手写数字的识别准确率高达约 90%。