Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
Spallation Neutron Source Science Center, Dongguan, Guangdong 523803, People's Republic of China.
J Synchrotron Radiat. 2020 Mar 1;27(Pt 2):477-485. doi: 10.1107/S160057752000017X. Epub 2020 Feb 13.
In transmission X-ray microscopy (TXM) systems, the rotation of a scanned sample might be restricted to a limited angular range to avoid collision with other system parts or high attenuation at certain tilting angles. Image reconstruction from such limited angle data suffers from artifacts because of missing data. In this work, deep learning is applied to limited angle reconstruction in TXMs for the first time. With the challenge to obtain sufficient real data for training, training a deep neural network from synthetic data is investigated. In particular, U-Net, the state-of-the-art neural network in biomedical imaging, is trained from synthetic ellipsoid data and multi-category data to reduce artifacts in filtered back-projection (FBP) reconstruction images. The proposed method is evaluated on synthetic data and real scanned chlorella data in 100° limited angle tomography. For synthetic test data, U-Net significantly reduces the root-mean-square error (RMSE) from 2.55 × 10 µm in the FBP reconstruction to 1.21 × 10 µm in the U-Net reconstruction and also improves the structural similarity (SSIM) index from 0.625 to 0.920. With penalized weighted least-square denoising of measured projections, the RMSE and SSIM are further improved to 1.16 × 10 µm and 0.932, respectively. For real test data, the proposed method remarkably improves the 3D visualization of the subcellular structures in the chlorella cell, which indicates its important value for nanoscale imaging in biology, nanoscience and materials science.
在透射 X 射线显微镜 (TXM) 系统中,扫描样品的旋转可能会限制在有限的角度范围内,以避免与其他系统部件碰撞或在某些倾斜角度下发生高衰减。由于数据缺失,从这些有限角度的数据进行图像重建会产生伪影。在这项工作中,深度学习首次被应用于 TXM 的有限角度重建。由于获取足够真实数据进行训练的挑战,研究了从合成数据训练深度神经网络的问题。特别是,从合成椭圆体数据和多类别数据训练的最先进的生物医学成像神经网络 U-Net 被用于减少滤波反投影 (FBP) 重建图像中的伪影。在所提出的方法中,对合成数据和 100°有限角度层析成像中的真实扫描小球藻数据进行了评估。对于合成测试数据,U-Net 显著降低了 FBP 重建中的均方根误差 (RMSE) ,从 2.55×10µm 降低到 U-Net 重建中的 1.21×10µm,同时也将结构相似性 (SSIM) 指数从 0.625 提高到 0.920。通过对测量投影进行惩罚加权最小二乘去噪,RMSE 和 SSIM 进一步提高到 1.16×10µm 和 0.932。对于真实测试数据,所提出的方法显著改善了小球藻细胞中超微结构的 3D 可视化,这表明它在生物学、纳米科学和材料科学中的纳米成像方面具有重要价值。